13 research outputs found

    Data from: Evidence for adaptation from standing genetic variation on an antimicrobial peptide gene in the mussel Mytilus edulis

    No full text
    Genome scans of population differentiation identify candidate loci for adaptation but provide little information on how selection has influenced the genetic structure of these loci. Following a genome scan, we investigated the nature of the selection responsible for the outlying differentiation observed between populations of the marine mussel Mytilus edulis at a leucine/arginine polymorphism (L31R) in the antimicrobial peptide MGD2. We analysed DNA sequence polymorphisms, allele frequencies and population differentiation of polymorphisms closely linked to L31R, and pairwise and third-order linkage disequilibria. An outlying level of population differentiation was observed at L31R only, while no departure from panmixia was observed at linked loci surrounding L31R, as in most of the genome. Selection therefore seems to affect L31R directly. Three hypotheses can explain the lack of differentiation in the chromosomal region close to L31R: (i) hitchhiking has occurred but migration and recombination subsequently erased the signal, (ii) selection was weak enough and recombination strong enough to limit the hitchhiking effect to a very small chromosomal region or (iii) selection acted on a pre-existing polymorphism (i.e. standing variation) at linkage equilibrium with its background. Linkage equilibrium was observed between L31R and linked polymorphisms in every population analysed, as expected under the three hypotheses. However, linkage disequilibrium was observed in some populations between pairs of loci located upstream and downstream to L31R, generating a complex pattern of third-order linkage disequilibria which is best explained by the hypothesis of selection on a pre-existing polymorphism. We hypothesise that selection could be either balanced, maintaining alleles at different frequencies depending on the pathogen community encountered locally by mussels, or intermittent, resulting in sporadic fluctuations in allele frequency

    Solution Structure and Backbone Dynamics of the Pleckstrin Homology Domain of the Human Protein Kinase B (PKB/Akt). Interaction with Inositol Phosphates

    No full text
    International audienceThe programmed cell death occurs as part of normal mammalian development. The induction of developmental cell death is a highly regulated process and can be suppressed by a variety of extracellular stimuli. Recently, the ability of trophic factors to promote survival have been attributed, at least in part, to the phosphatidylinositide 3'-OH kinase (PI3K)/Protein Kinase B (PKB, also named Akt) cascade. Several targets of the PI3K/PKB signaling pathway have been identified that may underlie the ability of this regulatory cascade to promote cell survival. PKB possesses a N-terminal Pleckstrin Homology (PH) domain that binds specifically and with high affinity to PtIns(3,4,5)P(3) and PtIns(3,4)P(2), the PI3K second messengers. PKB is then recruited to the plasma membrane by virtue of its interaction with 3'-OH phosphatidylinositides and activated. Recent evidence indicates that PKB is active in various types of human cancer; constitutive PKB signaling activation is believed to promote proliferation and increased cell survival, thereby contributing to cancer progression. Thus, it has been shown that induction of PKB activity is augmented by the TCL1/MTCP1 oncoproteins through a physical association requiring the PKB PH domain. Here we present the three-dimensional solution structure of the PH domain of the human protein PKB (isoform beta). PKBbeta-PH is an electrostatically polarized molecule that adopts the same fold and topology as other PH-domains, consisting of a beta-sandwich of seven strands capped on one top by an alpha-helix. The opposite face presents three variable loops that appear poorly defined in the NMR structure. Measurements of (15)N spin relaxation times and heteronuclear (15)N[(1)H]NOEs showed that this poor definition is due to intrinsic flexibility, involving complex motions on different time scales. Chemical shift mapping studies correctly defined the binding site of Ins(1,3,4,5)P(4) (the head group of PtIns(3,4,5)P(3)), as was previously proposed from a crystallographic study. More interestingly, these studies allowed us to define a putative alternative low-affinity binding site for Ins(1,4,5)P(3). The binding of this sugar to PKBbeta-PH might also involve non-specific association that could explain the stabilization of the protein in solution in the presence of Ins(1,4,5)P(3)

    NGS developed in AQUAGENET. Designs and main results

    No full text
    AQUAGENET network comprises six partners from France, Spain and Portugal that cooperate for the development and application of biotechnology in the aquaculture industry. This network has implemented the most recent NGS technologies for the study genome and transcriptome of several species of fish, molluscs and pathogens. &nbsp; This study has been co-funded by project AQUAGENET (SOE2/P1/ E287) program INTERREG IVB SUDOE, and by project RTA2009-00066-00-00 from the Instituto Nacional de Investigaci&oacute;n y Tecnolog&iacute;a Agraria y Alimentaria (INIA, Spain), and FEDER (EU).www.juntadeandalucia.es/agriculturaypesca/ifapa/aquagenetLa red AQUAGENET incluye seis beneficiarios de Francia, Espa&ntilde;a y Portugal que cooperan para el desarrollo y aplicaci&oacute;n de biotecnolog&iacute;a en la industria acu&iacute;cola. Esta red ha implementado las m&aacute;s recientes tecnolog&iacute;as NGS para el estudio del genoma y transcriptoma de diferentes especies de peces, moluscos y pat&oacute;genos. Este trabajo ha sido cofinanciado por el proyecto AQUAGENET (SOE2/P1/ E287) programa INTERREG IVB SUDOE, y por el proyecto RTA2009-00066-00-00 para el Instituto Nacional de Investigaci&oacute;n y Tecnolog&iacute;a Agraria y Alimentaria (INIA, Spain), and FEDER (EU). www.juntadeandalucia.es/agriculturaypesca/ifapa/aquagenet</p

    Gene network and biological pathways associated with susceptibility to differentiated thyroid carcinoma

    No full text
    International audienceVariants identified in earlier genome-wide association studies (GWAS) on differentiated thyroid carcinoma (DTC) explain about 10% of the overall estimated genetic contribution and could not provide complete insights into biological mechanisms involved in DTC susceptibility. Integrating systems biology information from model organisms, genome-wide expression data from tumor and matched normal tissue and GWAS data could help identifying DTC-associated genes, and pathways or functional networks in which they are involved. We performed data mining of GWAS data of the EPITHYR consortium (1551 cases and 1957 controls) using various pathways and protein-protein interaction (PPI) annotation databases and gene expression data from The Cancer Genome Atlas. We identified eight DTC-associated genes at known loci 2q35 (DIRC3), 8p12 (NRG1), 9q22 (FOXE1, TRMO, HEMGN, ANP32B, NANS) and 14q13 (MBIP). Using the EW_dmGWAS approach we found that gene networks related to glycogenolysis, glycogen metabolism, insulin metabolism and signal transduction pathways associated with muscle contraction were overrepresented with association signals (false discovery rate adjusted p-value < 0.05). Additionally, suggestive association of 21 KEGG and 75 REACTOME pathways with DTC indicate a link between DTC susceptibility and functions related to metabolism of cholesterol, amino sugar and nucleotide sugar metabolism, steroid biosynthesis, and downregulation of ERBB2 signaling pathways. Together, our results provide novel insights into biological mechanisms contributing to DTC risk

    The H-NS dimerization domain defines a new fold contributing to DNA recognition.

    No full text
    International audienceH-NS, a protein found in Gram-negative bacteria, is involved in structuring the bacterial chromosome and acts as a global regulator for the expression of a wide variety of genes. These functions are correlated with both its DNA-binding and oligomerization properties. We have identified the minimal dimerization domain of H-NS, a 46 amino acid-long N-terminal fragment, and determined its structure using heteronuclear NMR spectroscopy. The highly intertwined structure of the dimer, reminiscent of a handshake, defines a new structural fold, which may offer a possibility for discriminating prokaryotic from eukaryotic proteins in drug design. Using mutational analysis, we also show that this N-terminal domain actively contributes to DNA binding, conversely to the current paradigm. Together, our data allows us to propose a model for the action of full length H-NS
    corecore