10 research outputs found

    Inactivation of genes coding for mitochondrial Nd7 and Nd9 complex I subunits in Chlamydomonas reinhardtii. Impact of complex I loss on respiration and energetic metabolism.

    Full text link
    In Chlamydomonas, unlike in flowering plants, genes coding for Nd7 (NAD7/49kDa) and Nd9 (NAD9/30kDa) core subunits of mitochondrial respiratory-chain complex I are nucleus-encoded. Both genes possess all the features that facilitate their expression and proper import of the polypeptides in mitochondria. By inactivating their expression by RNA interference or insertional mutagenesis, we show that both subunits are required for complex I assembly and activity. Inactivation of complex I impairs the cell growth rate, reduces the respiratory rate, leads to lower intracellular ROS production and lower expression of ROS scavenging enzymes, and is associated to a diminished capacity to concentrate CO2 without compromising photosynthetic capacity.Peer reviewe

    Inactivation of genes coding for mitochondrial Nd7 and Nd9 complex I subunits in Chlamydomonas reinhardtii. Impact of complex I loss on respiration and energetic metabolism.

    Get PDF
    In Chlamydomonas, unlike in flowering plants, genes coding for Nd7 (NAD7/49kDa) and Nd9 (NAD9/30kDa) core subunits of mitochondrial respiratory-chain complex I are nucleus-encoded. Both genes possess all the features that facilitate their expression and proper import of the polypeptides in mitochondria. By inactivating their expression by RNA interference or insertional mutagenesis, we show that both subunits are required for complex I assembly and activity. Inactivation of complex I impairs the cell growth rate, reduces the respiratory rate, leads to lower intracellular ROS production and lower expression of ROS scavenging enzymes, and is associated to a diminished capacity to concentrate CO2 without compromising photosynthetic capacity.Peer reviewe

    Caractérisation de l’ATP synthétase mitochondriale (complexe V) de l’algue verte Chlamydomonas reinhardtii. Spécialisation et évolution de l’enzyme chez les Chlorophyceae.

    Full text link
    RésuméLe complexe V mitochondrial (F1FO-ATP synthétase) catalyse la phosphorylation de l’ADP par le phosphate inorganique en utilisant la force proton-motrice générée par la chaîne de transport d’électrons. Ce complexe protéique possède deux domaines : un secteur associé à la membrane, FO, impliqué dans la translocation des protons, et un domaine extrinsèque, F1, qui catalyse la synthèse d’ATP. Les deux secteurs sont connectés par deux bras : un bras central qui couple la translocation des protons à la région catalytique, et un bras latéral qui est considéré comme faisant partie du stabilisateur (stator) de l’enzyme. Au cours de ce travail, nous nous sommes intéressés à l’enzyme de deux algues appartenant à la classe des Chlorophyceae, Chlamydomonas reinhardtii et Polytomella sp.. L'enzyme des deux algues présente une composition sous-unitaire atypique, les sous-unités classiquement retrouvées chez les eucaryotes et impliquées dans l’architecture du bras périphérique ou dans la dimérisation du complexe en étant absentes. En contrepartie, 9 sous-unités d’origine évolutive inconnue sont associées à l’enzyme. Elles ont été appelées Asa1 à 9 pour ATP Synthase Associated protein.Chez C. reinhardtii et Polytomella sp., l’ATP synthétase présente une stabilité accrue de sa forme dimérique in vitro, et, in vivo, les cellules de C. reinhardtii sont insensibles à l’oligomycine, un puissant inhibiteur de la translocation de protons au travers de FO. Nous avons dans un premier temps tenté d’établir la composition sous-unitaire du complexe V chez des espèces appartenant aux différentes classes de Chlorophytes (Chlorophyceae, Trebouxiophyceae, Prasinophyceae et Ulvophyceae) en combinant analyses génomiques et protéomiques. Plusieurs sous-unités Asa ont ainsi pu être détectées chez des algues appartenant à divers ordres de Chlorophyceae. Au contraire, les analyses de séquences disponibles chez les autres classes de Chlorophytes (Trebouxiophyceae, Prasinophyceae et Ulvophyceae) indiquent une composition canonique de l’enzyme. L’analyse de la stabilité de la forme dimérique du complexe de différentes espèces d'algues vertes sur BN PAGE (Blue Native PolyAcrylamide Gel Electrophoresis) suggère également que la présence d’un dimère stable est caractéristique aux Chlorophyceae. Par ailleurs, leur croissance, respiration, et niveaux d'ATP sont à peine affectés par la présence d'oligomycine à des concentrations inhibitrices chez les représentants des autres classes de Chlorophytes. Les nombreuses particularités communes aux algues appartenant à cette classe suggèrent que la perte d'éléments canoniques du stator est apparue lors de la séparation des Chlorophyceae et a été accompagnée du recrutement de nouvelles sous-unités. Ce réarrangement drastique de la composition de stator et du module de dimérisation pourrait avoir conféré de nouvelles propriétés à l’enzyme, notamment une meilleure stabilité et une plus grande résistance à l’oligomycine. Nous avons également étudié la fonction de la sous-unité atypique Asa7 en inactivant son expression chez C. reinhardtii. Bien que la perte de la sous-unité Asa7 n'aie aucun impact sur la bioénergétique des cellules ou sur la structure mitochondriale, elle déstabilise l’enzyme in vitro et rend la croissance, la respiration, et de le niveau d'ATP sensible à oligomycine. L'impact de la perte de l'activité ATP synthétase mitochondriale chez un organisme photosynthétique a été étudié chez C. reinhardtii par l’inactivation de l'expression du gène ATP2, codant pour la sous-unité catalytique beta. Les résultats démontrent que, en l'absence de beta, l'ATP synthétase ne peut plus être assemblée et les cellules deviennent dépendantes de la photosynthèse. La respiration en présence ou en absence du découpleur CCCP suggère que le passage des protons à travers la membrane interne mitochondriale est bloqué chez la souche mutante. Enfin, la morphologie des mitochondries est affectée, et les chloroplastes montrent un réaménagement massif de l'appareil photosynthétique, suggérant des répercussions importantes sur la synthèse d’ATP par les chloroplastes. Ces résultats contribuent à la compréhension des interactions entre organites bioénergétiques chez les organismes photosynthétiques

    Transcriptomics and Proteomics of a Secondary Green Alga.

    Full text link
    Euglena gracilis is a secondary green alga related to trypanosomes that derives from a secondary endosymbiosis between a phagotrophic ancestor and a prasinophycean green alga. Our general objective is to study the metabolic interactions established between the secondary plastid and the mitochondrion after the endosymbiotic event and to determine the phylogenetic origin of the genes encoding the proteins involved in the energetic pathways. As a first step, we analysed the subunit composition of the mitochondrial respiratory chain, both in silico and by targeted proteomics, to assess the extent of its similitude with the respiratory chain of Trypanosomatidae. We have shown that Euglena shares many additional subunits with trypanosomes, which suggests that these subunits are not especially associated to a parasitic lifestyle. As a second step, we sequenced the total transcriptome of Euglena and determined the phylogenetic origin of each predicted transcript using a database of about 1000 complete proteomes representing the diversity of life. These analyses confirmed that Euglena recruited its genes from a very diverse set of sources. As a third step, we performed a high-throughput analysis of the mitochondrial proteome of Euglena. Our MS/MS experiments, taking advantage of the availability of our transcriptome, mostly recovered mitochondrial proteins, which indicates that our mitochondrial extracts were quite pure. The identified proteins encompassed about 15 different mitochondrial pathways. We are now in the process of comparing the expression levels of both the transcripts and the corresponding proteins across a range of culture conditions selected to differently stimulate the mitochondrion and the plastid

    ND3 and ND4L subunits of mitochondrial complex I, both nucleus encoded in Chlamydomonas reinhardtii, are required for activity and assembly of the enzyme

    Full text link
    Made of more than 40 subunits, the rotenone-sensitive NADH:ubiquinone oxidoreductase (complex I) is the most intricate membrane-bound enzyme of the mitochondrial respiratory chain. In vascular plants, fungi, and animals, at least seven complex I subunits (ND1, -2, -3, -4, -4L, -5, and -6; ND is NADH dehydrogenase) are coded by mitochondrial genes. The role of these highly hydrophobic subunits in the enzyme activity and assembly is still poorly understood. In the unicellular green alga Chlamydomonas reinhardtii, the ND3 and ND4L subunits are encoded in the nuclear genome, and we show here that the corresponding genes, called NUO3 and NUO11, respectively, display features that facilitate their expression and allow the proper import of the corresponding proteins into mitochondria. In particular, both polypeptides show lower hydrophobicity compared to their mitochondrion-encoded counterparts. The expression of the NUO3 and NUO11 genes has been suppressed by RNA interference. We demonstrate that the absence of ND3 or ND4L polypeptides prevents the assembly of the 950-kDa whole complex I and suppresses the enzyme activity. The putative role of hydrophobic ND subunits is discussed in relation to the structure of the complex I enzyme. A model for the assembly pathway of the Chlamydomonas enzyme is proposed

    The mitochondrial ATP synthase of chlorophycean algae contains eight subunits of unknown origin involved in the formation of an atypical stator-stalk and in the dimerization of the complex

    Full text link
    peer reviewedMitochondrial F1FO-ATP synthase of Chlamydomonas reinhardtii and Polytomella sp. is a dimer of 1,600,000 Da. In Chlamydomonas the enzyme lacks the classical subunits that constitute the peripheral stator-stalk as well as those involved in the dimerization of the fungal and mammal complex. Instead, it contains eight novel polypeptides named ASA1 to 8. We show that homologs of these subunits are also present in the chlorophycean algae Polytomella sp. and Volvox carterii. Blue Native Gel Electrophoresis analysis of mitochondria from different green algal species also indicates that stable dimeric mitochondrial ATP synthases may be characteristic of all Chlorophyceae. One additional subunit, ASA9, was identified in the purified mitochondrial ATP synthase of Polytomella sp. The dissociation profile of the Polytomella enzyme at high-temperatures and cross-linking experiments finally suggest that some of the ASA polypeptides constitute a stator-stalk with a unique architecture, while others may be involved in the formation of a highly-stable dimeric complex. The algal enzyme seems to have modified the structural features of its surrounding scaffold, while conserving almost intact the structure of its catalytic subunits

    The mitochondrial respiratory chain of the secondary green alga Euglena gracilis shares many additional subunits with parasitic Trypanosomatidae.

    Full text link
    The mitochondrion is an essential organelle for the production of cellular ATP in most eukaryotic cells. It is extensively studied, including in parasitic organisms such as trypanosomes, as a potential therapeutic target. Recently, numerous additional subunits of the respiratory-chain complexes have been described in Trypanosoma brucei and Trypanosoma cruzi. Since these subunits had apparently no counterparts in other organisms, they were interpreted as potentially associated with the parasitic trypanosome lifestyle. Here we used two complementary approaches to characterise the subunit composition of respiratory complexes in Euglena gracilis, a non-parasitic secondary green alga related to trypanosomes. First, we developed a phylogenetic pipeline aimed at mining sequence databases for identifying homologs to known respiratory-complex subunits with high confidence. Second, we used MS/MS proteomics after two-dimensional separation of the respiratory complexes by Blue Native- and SDS-PAGE to both confirm in silico predictions and to identify further additional subunits. Altogether, we identified 41 subunits that are restricted to E. gracilis, T. brucei and T. cruzi, along with 48 classical subunits described in other eukaryotes (i.e. plants, mammals and fungi). This moreover demonstrates that at least half of the subunits recently reported in T. brucei and T. cruzi are actually not specific to Trypanosomatidae, but extend at least to other Euglenozoa, and that their origin and function are thus not specifically associated with the parasitic lifestyle. Furthermore, preliminary biochemical analyses suggest that some of these additional subunits underlie the peculiarities of the respiratory chain observed in Euglenozoa

    Loss of mitochondrial ATP synthase subunit beta (Atp2) alters mitochondrial and chloroplastic function and morphology in Chlamydomonas.

    Get PDF
    Mitochondrial F(1)F(O) ATP synthase (Complex V) catalyses ATP synthesis from ADP and inorganic phosphate using the proton-motive force generated by the substrate-driven electron transfer chain. In this work, we investigated the impact of the loss of activity of the mitochondrial enzyme in a photosynthetic organism. In this purpose, we inactivated by RNA interference the expression of the ATP2 gene, coding for the catalytic subunit beta, in the green alga Chlamydomonas reinhardtii. We demonstrate that in the absence of beta subunit, complex V is not assembled, respiratory rate is decreased by half and ATP synthesis coupled to the respiratory activity is fully impaired. Lack of ATP synthase also affects the morphology of mitochondria which are deprived of cristae. We also show that mutants are obligate phototrophs and that rearrangements of the photosynthetic apparatus occur in the chloroplast as a response to ATP synthase deficiency in mitochondria. Altogether, our results contribute to the understanding of the yet poorly studied bioenergetic interactions between organelles in photosynthetic organisms

    Subunit-subunit interactions and overall topology of the dimeric mitochondrial ATP synthase of Polytomella sp.

    Full text link
    Mitochondrial F(1)F(0)-ATP synthase of chlorophycean algae is a dimeric complex of 1600kDa constituted by 17 different subunits with varying stoichiometries, 8 of them conserved in all eukaryotes and 9 that seem to be unique to the algal lineage (subunits ASA1-9). Two different models proposing the topological assemblage of the nine ASA subunits in the ATP synthase of the colorless alga Polytomella sp. have been put forward. Here, we readdressed the overall topology of the enzyme with different experimental approaches: detection of close vicinities between subunits based on cross-linking experiments and dissociation of the enzyme into subcomplexes, inference of subunit stoichiometry based on cysteine residue labelling, and general three-dimensional structural features of the complex as obtained from small-angle X-ray scattering and electron microscopy image reconstruction. Based on the available data, we refine the topological arrangement of the subunits that constitute the mitochondrial ATP synthase of Polytomella sp
    corecore