20 research outputs found

    The dynamic architecture of the metabolic switch in Streptomyces coelicolor

    Get PDF
    [EN] Background: During the lifetime of a fermenter culture, the soil bacterium S. coelicolor undergoes a major metabolic switch from exponential growth to antibiotic production. We have studied gene expression patterns during this switch, using a specifically designed Affymetrix genechip and a high-resolution time-series of fermenter-grown samples.Results: Surprisingly, we find that the metabolic switch actually consists of multiple finely orchestrated switching events. Strongly coherent clusters of genes show drastic changes in gene expression already many hours before the classically defined transition phase where the switch from primary to secondary metabolism was expected. The main switch in gene expression takes only 2 hours, and changes in antibiotic biosynthesis genes are delayed relative to the metabolic rearrangements. Furthermore, global variation in morphogenesis genes indicates an involvement of cell differentiation pathways in the decision phase leading up to the commitment to antibiotic biosynthesis.Conclusions: Our study provides the first detailed insights into the complex sequence of early regulatory events during and preceding the major metabolic switch in S. coelicolor, which will form the starting point for future attempts at engineering antibiotic production in a biotechnological settingSIWe are very grateful to Mervyn Bibb for his generous support with the Affymetrix custom microarray design. We acknowledge the excellent technical help of K. Klein, S. Poths, M. Walter, A. Øverby and E. Hansen. This project was supported by grants of the ERA-NET SySMO Project [GEN2006-27745-E/SYS]: (P-UK-01-11-3i) and the Research Council of Norway [project no. 181840/I30

    The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Get PDF
    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution

    The dynamic architecture of the metabolic switch in Streptomyces coelicolor

    Get PDF
    Background: During the lifetime of a fermenter culture, the soil bacterium S. coelicolor undergoes a major metabolic switch from exponential growth to antibiotic production. We have studied gene expression patterns during this switch, using a specifically designed Affymetrix genechip and a high-resolution time-series of fermenter-grown samples. Results: Surprisingly, we find that the metabolic switch actually consists of multiple finely orchestrated switching events. Strongly coherent clusters of genes show drastic changes in gene expression already many hours before the classically defined transition phase where the switch from primary to secondary metabolism was expected. The main switch in gene expression takes only 2 hours, and changes in antibiotic biosynthesis genes are delayed relative to the metabolic rearrangements. Furthermore, global variation in morphogenesis genes indicates an involvement of cell differentiation pathways in the decision phase leading up to the commitment to antibiotic biosynthesis. Conclusions: Our study provides the first detailed insights into the complex sequence of early regulatory events during and preceding the major metabolic switch in S. coelicolor, which will form the starting point for future attempts at engineering antibiotic production in a biotechnological setting

    Effects of Ribavirin Dose Reduction vs Erythropoietin for Boceprevir-Related Anemia in Patients With Chronic Hepatitis C Virus Genotype 1 Infection—A Randomized Trial

    No full text
    International audienceBackground & AimsTreatment of hepatitis C virus (HCV) infection with boceprevir, peginterferon, and ribavirin can lead to anemia, which has been managed by reducing ribavirin dose and/or erythropoietin therapy. We assessed the effects of these anemia management strategies on rates of sustained virologic response (SVR) and safety.MethodsPatients (n = 687) received 4 weeks of peginterferon and ribavirin followed by 24 or 44 weeks of boceprevir (800 mg, 3 times each day) plus peginterferon and ribavirin. Patients who became anemic (levels of hemoglobin approximately ≤10 g/dL) during the study treatment period (n = 500) were assigned to groups that were managed by ribavirin dosage reduction (n = 249) or erythropoietin therapy (n = 251).ResultsRates of SVR were comparable between patients whose anemia was managed by ribavirin dosage reduction (71.5%) vs erythropoietin therapy (70.9%), regardless of the timing of the first intervention to manage anemia or the magnitude of ribavirin dosage reduction. There was a threshold for the effect on rate of SVR: patients who received <50% of the total milligrams of ribavirin assigned by the protocol had a significantly lower rate of SVR (P < .0001) than those who received ≥50%. Among patients who did not develop anemia, the rate of SVR was 40.1%. Eleven thromboembolic adverse events were reported in 9 of 295 patients who received erythropoietin, compared with 1 of 392 patients who did not receive erythropoietin.ConclusionsReduction of ribavirin dosage can be the primary approach for management of anemia in patients receiving peginterferon, ribavirin, and boceprevir for HCV infection. Reduction in ribavirin dosage throughout the course of triple therapy does not affect rates of SVR. However, it is important that the patient receives at least 50% of the total amount (milligrams) of ribavirin assigned by response-guided therapy
    corecore