41 research outputs found
Transcranial Direct Current Stimulation Improves Isometric Time to Exhaustion of the Knee Extensors
Transcranial direct current stimulation (tDCS) can increase cortical excitability of a targeted brain area, which may affect endurance exercise performance. However, optimal electrode placement for tDCS remains unclear. We tested the effect of two different tDCS electrode montages for improving exercise performance. Nine subjects underwent a control (CON), placebo (SHAM) and two different tDCS montage sessions in a randomized design. In one tDCS session, the anodal electrode was placed over the left motor cortex and the cathodal on contralateral forehead (HEAD), while for the other montage the anodal electrode was placed over the left motor cortex and cathodal electrode above the shoulder (SHOULDER). tDCS was delivered for 10min at 2.0mA, after which participants performed an isometric time to exhaustion (TTE) test of the right knee extensors. Peripheral and central neuromuscular parameters were assessed at baseline, after tDCS application and after TTE. Heart rate (HR), ratings of perceived exertion (RPE), and leg muscle exercise-induced muscle pain (PAIN) were monitored during the TTE. TTE was longer and RPE lower in the SHOULDER condition (P0.05). In all conditions maximal voluntary contraction (MVC) significantly decreased after the TTE (P<0.05) while motor-evoked potential area (MEP) increased after TTE (P<0.05). These findings demonstrate that SHOULDER montage is more effective than HEAD montage to improve endurance performance, likely through avoiding the negative effects of the cathode on excitability
Bilateral extracephalic transcranial direct current stimulation improves endurance performance in healthy individuals
Background: Transcranial direct current stimulation (tDCS) has been used to enhance endurance performance but its precise mechanisms and effects remain unknown. Objective: To investigate the effect of bilateral tDCS on neuromuscular function and performance during a cycling time to task failure (TTF) test. Methods: Twelve participants in randomized order received a placebo tDCS (SHAM) or real tDCS with two cathodes (CATHODAL) or two anodes (ANODAL) over bilateral motor cortices and the opposite electrode pair over the ipsilateral shoulders. Each session lasted 10 min and current was set at 2mA. Neuromuscular assessment was performed before and after tDCS and was followed by a cycling time to task failure (TTF) test. Heart rate (HR), ratings of perceived exertion (RPE), leg muscle pain (PAIN) and blood lactate accumulation (?B[La-]) in response to the cycling TTF test were measured. Results: Corticospinal excitability increased in the ANODAL condition (P < 0.001) while none of the other neuromuscular parameters showed any change. Neuromuscular parameters did not change in the SHAM and CATHODAL conditions. TTF was significantly longer in the ANODAL (P = 0.003) compared to CATHODAL and SHAM conditions (12.61 ± 4.65 min; 10.61 ± 4.34 min; 10.21 ± 3.47 min respectively), with significantly lower RPE and higher ?B[La-] (P < 0.001). No differences between conditions were found for HR (P = 0.803) and PAIN during the cycling TTF test (P = 0.305). Conclusion: Our findings demonstrate that tDCS with the anode over both motor cortices using a bilateral extracephalic reference improves endurance performance
Test validation in sport physiology: Lessons learned from clinimetrics
We propose that physiological and performance tests used in sport science research and professional practice should be developed following a rigorous validation process, as is done in other scientific fields, such as clinimetrics, an area of research that focuses on the quality of clinical measurement and uses methods derived from psychometrics. In this commentary, we briefly review some of the attributes that must be explored when validating a test: the conceptual model, validity, reliability, and responsiveness. Examples from the sport science literature are provided. \ua9 2009 Human Kinetics, Inc