110 research outputs found

    Studio dei metaboliti chimici dell'uva finalizzato a valutare le potenzialità enologiche, nutraceutiche ed industriali di alcune varietà di vite e nuovi approcci di metabolomica

    Get PDF
    Grape, wine and oenology by-products are rich in polyphenols and in particular flavonoids: flavonols, anthocyanins, flavanols and proanthocyanidins. Those molecules are plants secondary metabolites and may also contribute to the bitterness and astringency of grapes and wines. In recent years, epidemiological studies have revealed the great potential of polyphenols and flavonoids in human diet on protection against cancers, infections, their role in anti-aging and also against the development of several chronic diseases such as cardiovascular diseases (CVDs) or diabetes. Their role for human health is attributed mainly to their antioxidant, anti-inflammatory, antimicrobial activities. Therefore these bio-compounds could find promising applications in pharmaceutical, nutraceutical and food industries as active ingredients in supplements with antioxidant activity, value-added ingredients in fortified foods or as natural dyes and preservatives. The aim of this research is to investigate the contents of chemical metabolites in several unique Vitis vinifera varieties and hybrids, and to examine their potential for oenological, nutraceutical and industrial applications. Modern spectrophotometry, chromatography and mass spectrometry (MALDI/MS, LC/MS, GC/MS) analytical techniques were applied in order to achieve the aims of the research. Nine Vitis vinifera italian native grape varieties from Friuli Venezia Giulia and Veneto regions, were investigated for their enological potential, by studying the main classes of polyphenols and aroma compounds of grapes and their organoleptic wine characteristics. In addition 32 hybrid varieties (21 red, 11 white) that belong to the CRA-VIT Grapevine Germplasm Collection located in Conegliano (TV) were studied to evaluate their nutraceutical and industrial potential. The study of anthocyanins of red hybrids showed that some varieties (e.g. Seibel 8357) have rich content of pigments and are therefore attractive for the production of natural dyes that are used in the food and pharmaceutical industry. Moreover, some varieties (Bacò 1 and Seibel 10878) were also found interesting for their triglycerides content in grape seed oil with high linoleic acid content (up to 70%), which is essential fatty acid effective in reducing LDL cholesterol. The nutraceutical potential of hybrid varieties was investigated by studying grape seed proanthocyanidins. Oligomeric and polymeric proanthocyanidins with different degree of galloylation were determined in grape seed extracts suggesting potential application of the extracts as antioxidants in nutraceutical products and also as oenological tannins. Eventually, a new methodology was established for grape metabolome study based on High-Resolution Mass Spectrometry (HR-MS) analysis and the “suspect screening analysis” approach. This method was proved to be very effective due to the ability to identify hundreds of compounds in one single run and also individual classes of grape polyphenol

    The Potential Role of Peripheral Oxidative Stress on the Neurovascular Unit in Amyotrophic Lateral Sclerosis Pathogenesis: A Preliminary Report from Human and In Vitro Evaluations

    Get PDF
    Oxidative stress, the alteration of mitochondrial function, and changes in the neurovascular unit (NVU) could play a role in Amyotrophic Lateral Sclerosis (ALS) pathogenesis. Our aim was to analyze the plasma redox system and nitric oxide (NO) in 25 ALS new-diagnosed patients and five healthy controls and the effects of plasma on the peroxidation/mitochondrial function in human umbilical cord-derived endothelial vascular cells (HUVEC) and astrocytes. In plasma, thiobarbituric acid reactive substances (TBARS), glutathione (GSH), and nitric oxide (NO) were analyzed by using specific assays. In HUVEC/astrocytes, the effects of plasma on the release of mitochondrial reactive oxygen species (mitoROS) and NO, viability, and mitochondrial membrane potential were investigated. In the plasma of ALS patients, an increase in TBARS and a reduction in GSH and NO were found. In HUVEC/astrocytes treated with a plasma of ALS patients, mitoROS increased, whereas cell viability and mitochondrial membrane potential decreased. Our results show that oxidative stress and NVU play a central role in ALS and suggest that unknown plasma factors could be involved in the disease pathogenesis. Quantifiable changes in ALS plasma related to redox state alterations can possibly be used for early diagnosis

    Generation of an induced pluripotent stem cell line, CSSi011-A (6534), from an Amyotrophic lateral sclerosis patient with heterozygous L145F mutation in SOD1 gene

    Get PDF
    Among the known causative genes of familial ALS, SOD1 mutation is one of the most common. It encodes for the ubiquitous detoxifying copper/zinc binding SOD1 enzyme, whose mutations selectively cause motor neuron death, although the mechanisms are not as yet clear. What is known is that mutant-mediated toxicity is not caused by loss of its detoxifying activity but by a gain-of-function. In order to better understand the pathogenic mechanisms of SOD1 mutation, a human induced pluripotent stem cell (hiPSC) line was generated from the somatic cells of a female patient carrying a missense variation in SOD1 (L145F)

    Effect of RNS60 in amyotrophic lateral sclerosis: a phase II multicentre, randomized, double-blind, placebo-controlled trial

    Get PDF
    Background and purpose Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with limited treatment options. RNS60 is an immunomodulatory and neuroprotective investigational product that has shown efficacy in animal models of ALS and other neurodegenerative diseases. Its administration has been safe and well tolerated in ALS subjects in previous early phase trials. Methods This was a phase II, multicentre, randomized, double-blind, placebo-controlled, parallel-group trial. Participants diagnosed with definite, probable or probable laboratory-supported ALS were assigned to receive RNS60 or placebo administered for 24 weeks intravenously (375 ml) once a week and via nebulization (4 ml/day) on non-infusion days, followed by an additional 24 weeks off-treatment. The primary objective was to measure the effects of RNS60 treatment on selected biomarkers of inflammation and neurodegeneration in peripheral blood. Secondary objectives were to measure the effect of RNS60 on functional impairment (ALS Functional Rating Scale-Revised), a measure of self-sufficiency, respiratory function (forced vital capacity, FVC), quality of life (ALS Assessment Questionnaire-40, ALSAQ-40) and survival. Tolerability and safety were assessed. Results Seventy-four participants were assigned to RNS60 and 73 to placebo. Assessed biomarkers did not differ between arms. The mean rate of decline in FVC and the eating and drinking domain of ALSAQ-40 was slower in the RNS60 arm (FVC, difference 0.41 per week, standard error 0.16, p = 0.0101; ALSAQ-40, difference -0.19 per week, standard error 0.10, p = 0.0319). Adverse events were similar in the two arms. In a post hoc analysis, neurofilament light chain increased over time in bulbar onset placebo participants whilst remaining stable in those treated with RNS60. Conclusions The positive effects of RNS60 on selected measures of respiratory and bulbar function warrant further investigation

    Withdrawal of mechanical ventilation in amyotrophic lateral sclerosis patients: a multicenter Italian survey

    Get PDF
    Background: Law 219/2017 was approved in Italy in December 2017, after a years-long debate on the autonomy of healthcare choices. This Law, for the first time in Italian legislation, guarantees the patient's right to request for withdrawal of life-sustaining treatments, including mechanical ventilation (MV). Objective: To investigate the current status of MV withdrawal in amyotrophic lateral sclerosis (ALS) patients in Italy and to assess the impact of Law 219/2017 on this practice. Methods: We conducted a Web-based survey, addressed to Italian neurologists with expertise in ALS care, and members of the Motor Neuron Disease Study Group of the Italian Society of Neurology. Results: Out of 40 ALS Italian centers, 34 (85.0%) responded to the survey. Law 219/2017 was followed by an increasing trend in MV withdrawals, and a significant increase of neurologists involved in this procedure (p 0.004). However, variations across Italian ALS centers were observed, regarding the inconsistent involvement of community health services and palliative care (PC) services, and the intervention and composition of the multidisciplinary team. Conclusions: Law 219/2017 has had a positive impact on the practice of MV withdrawal in ALS patients in Italy. The recent growing public attention on end-of-life care choices, along with the cultural and social changes in Italy, requires further regulatory frameworks that strengthen tools for self-determination, increased investment of resources in community and PC health services, and practical recommendations and guidelines for health workers involved

    SIAMOC position paper on gait analysis in clinical practice: General requirements, methods and appropriateness. Results of an Italian consensus conference

    Get PDF
    Gait analysis is recognized as a useful assessment tool in the field of human movement research. However, doubts remain on its real effectiveness as a clinical tool, i.e. on its capability to change the diagnostic-therapeutic practice. In particular, the conditions in which evidence of a favorable cost-benefit ratio is found and the methodology for properly conducting and interpreting the exam are not identified clearly. To provide guidelines for the use of Gait Analysis in the context of rehabilitation medicine, SIAMOC (the Italian Society of Clinical Movement Analysis) promoted a National Consensus Conference which was held in Bologna on September 14th, 2013. The resulting recommendations were the result of a three-stage process entailing i) the preparation of working documents on specific open issues, ii) the holding of the consensus meeting, and iii) the drafting of consensus statements by an external Jury. The statements were formulated based on scientific evidence or experts' opinion, when the quality/quantity of the relevant literature was deemed insufficient. The aim of this work is to disseminate the consensus statements. These are divided into 13 questions grouped in three areas of interest: 1) General requirements and management, 2) Methodological and instrumental issues, and 3) Scientific evidence and clinical appropriateness. SIAMOC hopes that this document will contribute to improve clinical practice and help promoting further research in the field

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons
    corecore