98 research outputs found

    Method and apparatus for preparing multiconductor cable with flat conductors

    Get PDF
    A method and apparatus for preparing flat conductor cable having a plurality of ribbon-like conductors disposed upon and adhesively bonded to the surface of a substrate is described. The conductors are brought into contact with the substrate surface, and while maintained in axial tension on said substrate, the combination is seated on a yieldably compressible layer to permit the conductor to become embedded into the surface of the substrate film

    Edge coating of flat wires

    Get PDF
    An apparatus and technique is described for the coating of the edge surfaces of flat ribbon conductors with an adherent coating of a dielectric insulating material. Means for passing the ribbon conductors between a pair of generally axially aligned rollers is provided. The edge surfaces of the conductor are disposed adjacent to and generally tangentially to the confronting surfaces of the roller so as to form a fillet of dielectric material along the edge surface of the conductor

    Bosniak category III cysts are more likely to be malignant than we expected in the era of multidetector computed tomography technology

    Get PDF
    Background: Complex indeterminate Bosniak category III renal cystic masses are traditionally considered to be malignant in 50%. Our aim was to retrospectively evaluate the attenuation characteristics in multiphase computed tomography (CT) and to determinate the incidence of malignancy based on histological findings on all Bosniak category III renal cystic masses investigated in our department between April 3, 2007 and November 21, 2013. Materials and Methods: Quadriphasic multidetector CT images of nineteen patients (mean age: 56.5 +/- 16.5 years) with radiologically detected Bosniak category III lesions were reviewed retrospectively. All lesions were surgically removed, and the incidence of malignancy, based on pathological results was determined. Results: Calcification was present in four lesions (21%). The mean largest diameter was 48.7 +/- 28.8 mm. All lesions were multilobulated and septated. Of the 19 removed lesions, 16 (84%) were malignant, and 3 (16%) were benign (one inflammatory cyst including a nephrolith, one cystic nephroma and one atypical angiomyolipoma). CT and histological findings of 19 Bosniak III cysts were correlated. Conclusion: Our study demonstrated much higher prevalence of malignancy (84%) in radiologically detected Bosniak category III cysts than it has been described before. It may due to the era of modern multidetector CT technology and multiphase protocol

    The Minimum Stellar Mass in Early Galaxies

    Full text link
    The conditions for the fragmentation of the baryonic component during merging of dark matter halos in the early Universe are studied. We assume that the baryonic component undergoes a shock compression. The characteristic masses of protostellar molecular clouds and the minimum masses of protostars formed in these clouds decrease with increasing halo mass. This may indicate that the initial stellar mass function in more massive galaxies was shifted towards lower masses during the initial stages of their formation. This would result in an increase of the number of stars per unit halo mass, i.e., the efficiency of star formation.Comment: 18 pages, 7 figure

    Galaxy Collisions - Dawn of a New Era

    Full text link
    The study of colliding galaxies has progressed rapidly in the last few years, driven by observations with powerful new ground and space-based instruments. These instruments have used for detailed studies of specific nearby systems, statistical studies of large samples of relatively nearby systems, and increasingly large samples of high redshift systems. Following a brief summary of the historical context, this review attempts to integrate these studies to address the following key issues. What role do collisions play in galaxy evolution, and how can recently discovered processes like downsizing resolve some apparently contradictory results of high redshift studies? What is the role of environment in galaxy collisions? How is star formation and nuclear activity orchestrated by the large scale dynamics, before and during merger? Are novel modes of star formation involved? What are we to make of the association of ultraluminous X-ray sources with colliding galaxies? To what do degree do mergers and feedback trigger long-term secular effects? How far can we push the archaeology of individual systems to determine the nature of precursor systems and the precise effect of the interaction? Tentative answers to many of these questions have been suggested, and the prospects for answering most of them in the next few decades are good.Comment: 44 pages, 9 figures, review article in press for Astrophysics Update Vol.

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Potential of Airborne LiDAR Derived Vegetation Structure for the Prediction of Animal Species Richness at Mount Kilimanjaro

    Get PDF
    The monitoring of species and functional diversity is of increasing relevance for the development of strategies for the conservation and management of biodiversity. Therefore, reliable estimates of the performance of monitoring techniques across taxa become important. Using a unique dataset, this study investigates the potential of airborne LiDAR-derived variables characterizing vegetation structure as predictors for animal species richness at the southern slopes of Mount Kilimanjaro. To disentangle the structural LiDAR information from co-factors related to elevational vegetation zones, LiDAR-based models were compared to the predictive power of elevation models. 17 taxa and 4 feeding guilds were modeled and the standardized study design allowed for a comparison across the assemblages. Results show that most taxa (14) and feeding guilds (3) can be predicted best by elevation with normalized RMSE values but only for three of those taxa and two of those feeding guilds the difference to other models is significant. Generally, modeling performances between different models vary only slightly for each assemblage. For the remaining, structural information at most showed little additional contribution to the performance. In summary, LiDAR observations can be used for animal species prediction. However, the effort and cost of aerial surveys are not always in proportion with the prediction quality, especially when the species distribution follows zonal patterns, and elevation information yields similar results

    Dwarf Elliptical Galaxies

    Get PDF
    Dwarf elliptical (dE) galaxies, with blue absolute magnitudes typically fainter than MB=16M_B = -16, are the most numerous type of galaxy in the nearby universe. Tremendous advances have been made over the past several years in delineating the properties of both Local Group satellite dE's and the large dE populations of nearby clusters. We review some of these advances, with particular attention to how well currently available data can constrain 1) models for the formation of dE's, 2) the physical and evolutionary connections between different types of galaxies (nucleated and nonnucleated dE's, compact E's, irregulars, and blue compact dwarfs) that overlap in the same portion of the mass-spectrum of galaxies, 3) the contribution of dE's to the galaxy luminosity functions in clusters and the field, 4) the star-forming histories of dE's and their possible contribution to faint galaxy counts, and 5) the clustering properties of dE's. In addressing these issues, we highlight the extent to which selection effects temper these constraints, and outline areas where new data would be particularly valuable.Comment: 63p, uuencoded compressed postscript, 2/8 figs included, A&A Review in press, request paper copies from [email protected], STScI 86
    corecore