13 research outputs found

    Citrus Genetic Transformation: An Overview of the Current Strategies and Insights on the New Emerging Technologies

    Get PDF
    Citrus are among the most prevailing fruit crops produced worldwide. The implementation of effective and reliable breeding programs is essential for coping with the increasing demands of satisfactory yield and quality of the fruit as well as to deal with the negative impact of fast-spreading diseases. Conventional methods are time-consuming and of difficult application because of inherent factors of citrus biology, such as their prolonged juvenile period and a complex reproductive stage, sometimes presenting infertility, self-incompatibility, parthenocarpy, or polyembryony. Moreover, certain desirable traits are absent from cultivated or wild citrus genotypes. All these features are challenging for the incorporation of the desirable traits. In this regard, genetic engineering technologies offer a series of alternative approaches that allow overcoming the difficulties of conventional breeding programs. This review gives a detailed overview of the currently used strategies for the development of genetically modified citrus. We describe different aspects regarding genotype varieties used, including elite cultivars or extensively used scions and rootstocks. Furthermore, we discuss technical aspects of citrus genetic transformation procedures via Agrobacterium, regular physical methods, and magnetofection. Finally, we describe the selection of explants considering young and mature tissues, protoplast isolation, etc. We also address current protocols and novel approaches for improving the in vitro regeneration process, which is an important bottleneck for citrus genetic transformation. This review also explores alternative emerging transformation strategies applied to citrus species such as transient and tissue localized transformation. New breeding technologies, including cisgenesis, intragenesis, and genome editing by clustered regularly interspaced short palindromic repeats (CRISPR), are also discussed. Other relevant aspects comprising new promoters and reporter genes, marker-free systems, and strategies for induction of early flowering, are also addressed. We provided a future perspective on the use of current and new technologies in citrus and its potential impact on regulatory processes.Instituto de Biotecnología y Biología Molecula

    Infrared Assisted Production of 3,4-Dihydro-2(1H)-pyridones in Solvent-Free Conditions

    Get PDF
    A green approach for the synthesis of a set of ten 4-aryl substituted-5-alcoxy carbonyl-6-methyl-3,4-dihydro-2(1H)-pyridones using Meldrum’s acid has been devised, the absence of solvent and the activation with infrared irradiation in addition to a multicomponent protocol are the main reaction conditions. The transformations proceeded with moderated yields (50–75%) with a reasonable reaction rate (3 h). It is worth noting that two novel molecules of the new class of the bis-3,4-dihydropyridones were also obtained. In addition, a comparison without the use of infrared irradiation was performed

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Adsorption of Recombinant Human β-Defensin 2 and Two Mutants on Mesoporous Silica Nanoparticles and Its Effect against Clavibacter michiganensis subsp. michiganensis

    No full text
    Solanum lycopersicum L. is affected among other pests and diseases, by the actinomycete Clavibacter michiganensis subsp. michiganensis (Cmm), causing important economic losses worldwide. Antimicrobial peptides (AMPs) are amphipathic cationic oligopeptides with which the development of pathogenic microorganisms has been inhibited. Therefore, in this study, we evaluate antimicrobial activity of mesoporous silica nanoparticles (MSN5.4) loaded with human β-defensin-2 (hβD2) and two mutants (TRX-hβD2-M and hβD2-M) against Cmm. hβD2, TRX-hβD2-M and hβD2-M presented a half-maximum inhibitory concentration (IC50) of 3.64, 1.56 and 6.17 μg/mL, respectively. MSNs had average particle sizes of 140 nm (SEM) and a tunable pore diameter of 4.8 up to 5.4 nm (BJH). AMPs were adsorbed more than 99% into MSN and a first release after 24 h was observed. The MSN loaded with the AMPs inhibited the growth of Cmm in solid and liquid media. It was also determined that MSNs protect AMPs from enzymatic degradation when the MSN/AMPs complexes were exposed to a pepsin treatment. An improved AMP performance was registered when it was adsorbed in the mesoporous matrix. The present study could expand the applications of MSNs loaded with AMPs as a biological control and provide new tools for the management of phytopathogenic microorganisms

    Citrus genetic transformation: an overview of the current strategies and insights on the new emerging technologies

    Get PDF
    Citrus are among the most prevailing fruit crops produced worldwide. The implementation of effective and reliable breeding programs is essential for coping with the increasing demands of satisfactory yield and quality of the fruit as well as to deal with the negative impact of fast-spreading diseases. Conventional methods are time-consuming and of difficult application because of inherent factors of citrus biology, such as their prolonged juvenile period and a complex reproductive stage, sometimes presenting infertility, self-incompatibility, parthenocarpy, or polyembryony. Moreover, certain desirable traits are absent from cultivated or wild citrus genotypes. All these features are challenging for the incorporation of the desirable traits. In this regard, genetic engineering technologies offer a series of alternative approaches that allow overcoming the difficulties of conventional breeding programs. This review gives a detailed overview of the currently used strategies for the development of genetically modified citrus. We describe different aspects regarding genotype varieties used, including elite cultivars or extensively used scions and rootstocks. Furthermore, we discuss technical aspects of citrus genetic transformation procedures via Agrobacterium, regular physical methods, and magnetofection. Finally, we describe the selection of explants considering young and mature tissues, protoplast isolation, etc. We also address current protocols and novel approaches for improving the in vitro regeneration process, which is an important bottleneck for citrus genetic transformation. This review also explores alternative emerging transformation strategies applied to citrus species such as transient and tissue localized transformation. New breeding technologies, including cisgenesis, intragenesis, and genome editing by clustered regularly interspaced short palindromic repeats (CRISPR), are also discussed. Other relevant aspects comprising new promoters and reporter genes, marker-free systems, and strategies for induction of early flowering, are also addressed. We provided a future perspective on the use of current and new technologies in citrus and its potential impact on regulatory processes.Instituto de BiotecnologíaFil: Conti, Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Conti, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Conti, Gabriela. Universidad de Buenos Aires. Faculta de Agronomía. Cátedra de Genética; ArgentinaFil: Xoconostle-Cázares, Beatriz. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Departamento de Biotecnología y Bioingeniería; MéxicoFil: Marcelino-Pérez, Gabriel. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Departamento de Biotecnología y Bioingeniería; MéxicoFil: Hopp, Horacio Esteban. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Hopp, Horacio Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hopp, Horacio Esteban. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Reyes Martinez, Carina Andrea. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: Reyes Martinez, Carina Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentin

    Uso de productos derivados de bacillus thuringiensis como alternativa de control en nematodos de importancia veterinaria. revisión

    Get PDF
    Bacillus thuringiensis is an entomopathogenic bacterium that produces crystal-proteins with cytotoxic activity against insects and nematodes. B. thuringiensis toxicity on agriculture pests is widely recognized, however, there is little information about the lethal action of B. thuringiensis against nematodes. Recently, the nematicide activity of B. thuringiensis proteins was showed against Haemonchus, Teladorsagia, Nippostrongylus, and Ancylostoma genera of mammals, and against the plant parasitic nematodes, Globodera and Meloidogyne. From a list of B. thuringiensis strains with nematicide effect, selected proteins from the IB-16 isolate showed 50 to 100 % nematocidal efficacy against different developing stages of H. contortus. Additionally the in vitro assay showed evidence about the lethal activity of this strain against the free-living nematodes Panagrellus redivivus and Caenorhabditis elegans. The Cry5B protein of B. thuringiesis caused tissue damage on the C. elegans mid-gut and its action probably involves specific gut-receptor, similar to reporte with nematodes of importance in agriculture. Also, Cry5B protein-receptors link appears to involve carbohydrate moieties on intestinal cells, and cause tissue damage and nematodes death. Through these studies, selected B. thuringiensis proteins could be considered in future trials as potential alternative tools of control against parasitic nematodes of domestic animals, such as ruminants and other pathogens of mammals and even from agriculture crops.La bacteria entomopatógena Bacillus thuringiensis produce cristales proteicos con actividad citotóxica en contra de insectos y nematodos. La toxicidad de B. thuringiensis en plagas agrícolas es ampliamente conocida, pero poco se conoce cerca de su actividad en contra de nematodos parásitos. Recientemente, la actividad nematicida de las proteínas derivadas de B. thuringiensis se demostró en parásitos de mamíferos como Haemonchus, Teladorsagia, Nippostrongylus, y Ancylostoma, y en nematodos de plantas, Globodera y Meloidogyne. Entre el grupo de B. thuringiensis con efecto nematicida, las proteínas de la cepa IB-16 han mostrado actividad letal de 50 a 100 % en contra de diferentes estadios del principal género de rumiantes, Haemonchus contortus. Asimismo, los géneros de nematodos de vida libre, Panagrellus redivivus y Caenorhabditis elegans han sido blanco de estudios de la acción nematicida de B. thuringiensis. Por ejemplo, el efecto tóxico de la proteína Cry5B de B. thuringiensis se observó en las células intestinales de C. elegans, además esta acción parece involucrar receptores celulares específicos, similares a los que se han notificado en contra de plagas agrícolas. Asimismo, la unión de la proteína Cry5B ocurre en receptores específicos, como moléculas de carbohidratos, las cuales están presentes en la membrana de las células de intestino de los nematodos, ocasionando daño y muerte. A través de este tipo de estudios, los derivados de B. thuringiensis podrían considerarse una alternativa de control en nematodos que afectan a los animales domésticos, como rumiantes, así como en contra de otros nematodos patógenos de mamíferos e incluso de plantas agrícolas
    corecore