18 research outputs found
Phase-stable source of polarization-entangled photons in a linear double-pass configuration
We demonstrate a compact, robust, and highly efficient source of
polarization-entangled photons, based on linear bi-directional down-conversion
in a novel 'folded sandwich' configuration. Bi-directionally pumping a single
periodically poled KTiOPO (ppKTP) crystal with a 405-nm laser diode, we
generate entangled photon pairs at the non-degenerate wavelengths 784 nm
(signal) and 839 nm (idler), and achieve an unprecedented detection rate of
11.8 kcps for 10.4 W of pump power (1.1 million pairs / mW), in a 2.9-nm
bandwidth, while maintaining a very high two-photon entanglement quality, with
a Bell-state fidelity of %
Isolation of a gene cluster from Armillaria gallica for the synthesis of armillyl orsellinate–type sesquiterpenoids
Melleolides and armillyl orsellinates are protoilludene-type aryl esters that are synthesized exclusively by parasitic fungi of the globally distributed genus Armillaria (Agaricomycetes, Physalacriaceae). Several of these compounds show potent antimicrobial and cytotoxic activities, making them promising leads for the development of new antibiotics or drugs for the treatment of cancer. We recently cloned and characterized the Armillaria gallica gene Pro1 encoding protoilludene synthase, a sesquiterpene cyclase catalyzing the pathway-committing step to all protoilludene-type aryl esters. Fungal enzymes representing secondary metabolic pathways are sometimes encoded by gene clusters, so we hypothesized that the missing steps in the pathway to melleolides and armillyl orsellinates might be identified by cloning the genes surrounding Pro1. Here we report the isolation of an A. gallica gene cluster encoding protoilludene synthase and four cytochrome P450 monooxygenases. Heterologous expression and functional analysis resulted in the identification of protoilludene-8α-hydroxylase, which catalyzes the first committed step in the armillyl orsellinate pathway. This confirms that ∆-6-protoilludene is a precursor for the synthesis of both melleolides and armillyl orsellinates, but the two pathways already branch at the level of the first oxygenation step. Our results provide insight into the synthesis of these valuable natural products and pave the way for their production by metabolic engineering
Preliminary assessment of the imaging capability of the YAP-(S)PET small animal scanner in neuroscience
The new and fully engineered version of the YAP–(S)PET small animal scanner has been tested at the University of Mainz for preliminary assessment of its imaging capability for studies related to neuropharmacology and psychiatry. The main feature of the scanner is the capability to combine PET and SPECT techniques. It allows the development of new and interesting protocols for the investigation of many biological phenomena, more effectively than with PET or SPECT modalities alone. The scanner is made up of four detector heads, each one composed of a 4 � 4c m 2 of YAlO3:Ce (or YAP:Ce) matrix, and has a field of view (FOV) of 4 cm axially � 4c m + transaxially. In PET mode, the volume resolution is less than 8 mm 3 and is nearly constant over the whole FOV, while the sensitivity is about 2%. The SPECT performance is not so good, due to the presence of the multi-hole lead collimator in front of each head. Nevertheless, the YAP–PET scanner offers excellent resolution and sensitivity for performing on the availability of D2-like dopamine receptors on mice and rats in both PET and SPECT modalities
A high-brightness source of polarization-entangled photons optimized for applications in free space
We present a simple but highly efficient source of polarization-entangled
photons based on spontaneous parametric down-conversion (SPDC) in bulk
periodically poled potassium titanyl phosphate crystals (PPKTP) pumped by a 405
nm laser diode. Utilizing one of the highest available nonlinear coefficients
in a non-degenerate, collinear type-0 phase-matching configuration, we generate
polarization entanglement via the crossed-crystal scheme and detect 0.64
million photon pair events/s/mW, while maintaining an overlap fidelity with the
ideal Bell state of 0.98 at a pump power of 0.025 mW
The first determination of Generalized Polarizabilities of the proton by a Virtual Compton Scattering experiment
Absolute differential cross sections for the reaction (e+p -> e+p+gamma) have
been measured at a four-momentum transfer with virtuality Q^2=0.33 GeV^2 and
polarization \epsilon = 0.62 in the range 33.6 to 111.5 MeV/c for the momentum
of the outgoing photon in the photon-proton center of mass frame. The
experiment has been performed with the high resolution spectrometers at the
Mainz Microtron MAMI. From the photon angular distributions, two structure
functions which are a linear combination of the generalized polarizabilities
have been determined for the first time.Comment: 4 pages, 3 figure
Apoptotic cell administration is detrimental in murine renal ischaemia reperfusion injury
BACKGROUND: Acute kidney injury induced by renal ischaemia reperfusion injury (IRI) is characterised by renal failure, acute tubular necrosis (ATN), inflammation and microvascular congestion. The administration of apoptotic cells (ACs) has been shown to reduce inflammation in various organs including the liver and kidney. This study explored whether AC administration prior to the induction of renal IRI was protective. FINDINGS: Renal IRI was induced in Balb/c mice by clamping the renal blood vessels for either 20, 24 or 25Â minutes to induce mild, moderate or severe kidney dysfunction respectively. Renal function and injury was determined 24 hours following IRI by measurement of plasma creatinine and ATN scoring respectively. ACs were generated from Balb/c thymocytes and classified as either predominantly early or late apoptotic by Annexin-V and propidium iodide staining. Early AC administration prior to severe IRI had no influence on plasma creatinine or ATN severity. In contrast, administration of early or late ACs significantly worsened renal function in mice with mild or moderate renal IRI, respectively, compared to PBS treated controls, though ATN scores were comparable. Despite ACs exerting pro-coagulant effects, the worsening of renal function was not secondary to increased microvascular congestion, inferred by fibrin and platelet (CD41) deposition, or inflammation, assessed by neutrophil infiltration. CONCLUSIONS: Despite the AC-derived protection demonstrated in other organs, ACs do not protect mice from renal IRI. ACs may in fact further impair renal function depending on injury severity. These data suggest that AC-derived protection is not translationally relevant for patients with acute kidney injury induced by ischaemic injury. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12950-014-0031-6) contains supplementary material, which is available to authorized users
Production, radiochemical separation and chemical coupling of radioactive arsenic isotopes to synthesize radiopharmaceuticals for molecular imaging
Noninvasive molecular-imaging technologies are playing a keyrole in drug discovery, development and delivery. Positron Emission Tomography (PET) is such a molecular imaging technology and a powerful tool for the observation of various diseases. However, it is limited by the availability of agents with high selectivity to the target and a physical half-life of the used positron emitting nuclide which matches the biological half-life of the observed process. For the long lasting enrichment of antibodies in tumor tissue few suitable isotopes for PET imaging are currently available. The element arsenic provides a range of isotopes, which could be used for diagnosis and also for endoradiotherapy.
This work describes the development of radiochemical separation procedures to separate arsenic isotopes in no-carrier-added (nca) purity from reactor or cyclotron
irradiated targets, the development and evaluation of a labeling chemistry to attach these separated arsenic isotopes to monoclonal antibodies, the in vitro and in vivo evaluation of antibodies labeled with radioactive arsenic isotopes and the molecular imaging using small animal PET.Nicht-invasives Molecular Imaging spielt eine Schluesselrolle fuer die Entdeckung und Entwicklung von Medikamenten. Positronen Emissions Tomographie (PET) ist solch eine Molecular Imaging Technologie und ein wertvolles Werkzeug fuer die Observation verschiedenster Krankheiten. Allerdings ist sie beschraenkt durch die Verfuegbarkeit von Medikamenten mit hoher Affinitaet zum Target und einer physikalischen Halbwertszeit die mit der biologischen Halbwertszeit des untersuchten Prozesses vergleichbar ist. Fuer die lang dauernde Anreicherung von Antikoerpern in Tumor Gewebe sind z.B. nur wenige
geeignete Radioisotope fuer die PET verfuegbar. Das Element Arsen verfuegt ueber einige Isotope, die fuer Diagnose und Endoradiotherapie benutzt werden koennten.
Diese Arbeit beschreibt die Entwicklung von radiochemischen Abtrennungen um Arsenisotope in no-carrier-added (nca) Reinheit von Reaktor- oder Zyklotron bestrahlten Targets abzutrennen, die Entwicklung und Evaluation einer Markierungschemie um diese abgetrennten Radioarsenisotope an Antikoerper zu koppeln und das Molecular Imaging mittels Kleintier-PET
Isolation of a gene cluster from Armillaria gallica for the synthesis of armillyl orsellinate-type sesquiterpenoids.
Melleolides and armillyl orsellinates are protoilludene-type aryl esters that are synthesized exclusively by parasitic fungi of the globally distributed genus Armillaria (Agaricomycetes, Physalacriaceae). Several of these compounds show potent antimicrobial and cytotoxic activities, making them promising leads for the development of new antibiotics or drugs for the treatment of cancer. We recently cloned and characterized the Armillaria gallica gene Pro1 encoding protoilludene synthase, a sesquiterpene cyclase catalyzing the pathway-committing step to all protoilludene-type aryl esters. Fungal enzymes representing secondary metabolic pathways are sometimes encoded by gene clusters, so we hypothesized that the missing steps in the pathway to melleolides and armillyl orsellinates might be identified by cloning the genes surrounding Pro1. Here we report the isolation of an A. gallica gene cluster encoding protoilludene synthase and four cytochrome P450 monooxygenases. Heterologous expression and functional analysis resulted in the identification of protoilludene-8α-hydroxylase, which catalyzes the first committed step in the armillyl orsellinate pathway. This confirms that ∆-6-protoilludene is a precursor for the synthesis of both melleolides and armillyl orsellinates, but the two pathways already branch at the level of the first oxygenation step. Our results provide insight into the synthesis of these valuable natural products and pave the way for their production by metabolic engineering. KEY POINTS: • Protoilludene-type aryl esters are bioactive metabolites produced by Armillaria spp. • The pathway-committing step to these compounds is catalyzed by protoilludene synthase. • We characterized CYP-type enzymes in the cluster and identified novel intermediates
Cloning and Characterization of an Armillaria gallica cDNA Encoding Protoilludene Synthase, Which Catalyzes the First Committed Step in the Synthesis of Antimicrobial Melleolides*
Melleolides and related fungal sesquiterpenoid aryl esters are antimicrobial and cytotoxic natural products derived from cultures of the Homobasidiomycetes genus Armillaria. The initial step in the biosynthesis of all melleolides involves cyclization of the universal sesquiterpene precursor farnesyl diphosphate to produce protoilludene, a reaction catalyzed by protoilludene synthase. We achieved the partial purification of protoilludene synthase from a mycelial culture of Armillaria gallica and found that 6-protoilludene was its exclusive reaction product. Therefore, a further isomerization reaction is necessary to convert the 6–7 double bond into the 7–8 double bond found in melleolides. We expressed an A. gallica protoilludene synthase cDNA in Escherichia coli, and this also led to the exclusive production of 6-protoilludene. Sequence comparison of the isolated sesquiterpene synthase revealed a distant relationship to other fungal terpene synthases. The isolation of the genomic sequence identified the 6-protoilludene synthase to be present as a single copy gene in the genome of A. gallica, possessing an open reading frame interrupted with eight introns