41 research outputs found

    Genetically determined Amerindian ancestry correlates with increased frequency of risk alleles for systemic lupus erythematosus

    Full text link
    Objective To assess whether genetically determined Amerindian ancestry predicts increased presence of risk alleles of known susceptibility genes for systemic lupus erythematosus (SLE). Methods Single-nucleotide polymorphisms (SNPs) within 16 confirmed genetic susceptibility loci for SLE were genotyped in a set of 804 Mestizo lupus patients and 667 Mestizo healthy controls. In addition, 347 admixture informative markers were genotyped. Individual ancestry proportions were determined using STRUCTURE. Association analysis was performed using PLINK, and correlation between ancestry and the presence of risk alleles was analyzed using linear regression. Results A meta-analysis of the genetic association of the 16 SNPs across populations showed that TNFSF4 , STAT4 , ITGAM , and IRF5 were associated with lupus in a Hispanic Mestizo cohort enriched for European and Amerindian ancestry. In addition, 2 SNPs within the major histocompatibility complex region, previously shown to be associated in a genome-wide association study in Europeans, were also associated in Mestizos. Using linear regression, we predicted an average increase of 2.34 risk alleles when comparing an SLE patient with 100% Amerindian ancestry versus an SLE patient with 0% Amerindian ancestry ( P < 0.0001). SLE patients with 43% more Amerindian ancestry were predicted to carry 1 additional risk allele. Conclusion Our results demonstrate that Amerindian ancestry is associated with an increased number of risk alleles for SLE.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78480/1/27753_ftp.pd

    Community SARS-CoV-2 Surge and Within-School Transmission

    Get PDF
    OBJECTIVES: When the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic began, experts raised concerns about in-person instruction in the setting of high levels of community transmission. We describe secondary transmission of SARS-CoV-2 within North Carolina (NC) K-12 school districts during a winter surge to determine if mitigation strategies can hinder within-school transmission. METHODS: From 10/26/2020–02/28/2021, 13 NC school districts participating in the ABC Science Collaborative were open for in-person instruction, adhered to basic mitigation strategies, and tracked community- and school-acquired SARS-CoV-2 cases. Public health officials adjudicated each case. We combined these data with that from August 2020 to evaluate the effect of the SARS-CoV-2 winter surge on infection rates, as well as weekly community- and school-acquired cases. We evaluated the number of secondary cases generated by each primary case, as well as the role of athletic activities in school-acquired cases. RESULTS: More than 100,000 students and staff from 13 school districts attended school in-person; of these, 4,969 community-acquired SARS-CoV-2 infections were documented by molecular testing. Through contact tracing, NC local health department staff identified an additional 209 infections among >26,000 school close contacts (secondary attack rate <1%). Most within-school transmissions in high schools (75%) were linked to school-sponsored sports. School-acquired cases slightly increased during the surge; however, within-school transmission rates remained constant, from pre-surge to surge, with approximately 1 school-acquired case for every 20 primary cases. CONCLUSIONS: With adherence to basic mitigation strategies, within-school transmission of SARS-CoV-2 can be interrupted, even during a surge of community infections

    Incidence and Secondary Transmission of SARS-CoV-2 Infections in Schools

    Get PDF
    BACKGROUND: In an effort to mitigate the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), North Carolina (NC) closed its K–12 public schools to in-person instruction on 03/14/2020. On 07/15/2020, NC’s governor announced schools could open via remote learning or a “hybrid” model that combined in-person and remote instruction. In August 2020, 56 of 115 NC school districts joined the ABC Science Collaborative (ABCs) to implement public health measures to prevent SARS-CoV-2 transmission and share lessons learned. We describe secondary transmission of SARS-CoV-2 within participating NC school districts during the first 9 weeks of in-person instruction in the 2020–2021 academic school year. METHODS: From 08/15/2020–10/23/2020, 11 of 56 school districts participating in ABCs were open for in-person instruction for all 9 weeks of the first quarter and agreed to track incidence and secondary transmission of SARS-CoV-2. Local health department staff adjudicated secondary transmission. Superintendents met weekly with ABCs faculty to share lessons learned and develop prevention methods. RESULTS: Over 9 weeks, 11 participating school districts had more than 90,000 students and staff attend school in-person; of these, there were 773 community-acquired SARS-CoV-2 infections documented by molecular testing. Through contact tracing, NC health department staff determined an additional 32 infections were acquired within schools. No instances of child-to-adult transmission of SARS-CoV-2 were reported within schools. CONCLUSIONS: In the first 9 weeks of in-person instruction in NC schools, we found extremely limited within-school secondary transmission of SARS-CoV-2, as determined by contact tracing

    Masking Adherence in K–12 Schools and SARS-CoV-2 Secondary Transmission

    Get PDF
    OBJECTIVES: Masking is an essential coronavirus 2019 mitigation tool assisting in the safe return of kindergarten through 12th grade children and staff to in-person instruction; however, masking adherence, compliance evaluation methods, and potential consequences of surveillance are currently unknown. We describe two school districts' approaches to promote in-school masking and the consequent impact on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) secondary transmission.METHODS: Two North Carolina school districts developed surveillance programs with daily vs. weekly interventions to monitor in-school masking adherence. Safety teams recorded the proportion of students and staff appropriately wearing masks and provided real-time education after observation of improper masking. Primary infections, within-school transmission, and county-level SARS-CoV-2 infection rates were assessed.RESULTS: Proper mask use was high in both intervention groups and districts. There were variations by grade level, with lower rates in elementary schools, and proper adherence being higher in the weekly surveillance group. Rates of secondary transmission were low in both districts with surveillance programs, regardless of intervention frequency.CONCLUSIONS: Masking surveillance interventions are effective at ensuring appropriate masking at all school levels. Creating a culture of safety within schools led by local leadership is important and a feasible opportunity for school districts with return to in-person school. In our study of schools with high masking adherence, secondary transmission was low

    Transancestral mapping and genetic load in systemic lupus erythematosus

    Get PDF
    Systemic lupus erythematosus (SLE) is an autoimmune disease with marked gender and ethnic disparities. We report a large transancestral association study of SLE using Immunochip genotype data from 27,574 individuals of European (EA), African (AA) and Hispanic Amerindian (HA) ancestry. We identify 58 distinct non-HLA regions in EA, 9 in AA and 16 in HA (∼50% of these regions have multiple independent associations); these include 24 novel SLE regions (P<5 × 10-8), refined association signals in established regions, extended associations to additional ancestries, and a disentangled complex HLA multigenic effect. The risk allele count (genetic load) exhibits an accelerating pattern of SLE risk, leading us to posit a cumulative hit hypothesis for autoimmune disease. Comparing results across the three ancestries identifies both ancestry-dependent and ancestry-independent contributions to SLE risk. Our results are consistent with the unique and complex histories of the populations sampled, and collectively help clarify the genetic architecture and ethnic disparities in SLE.info:eu-repo/semantics/publishedVersio

    Transancestral mapping and genetic load in systemic lupus erythematosus

    Get PDF
    Systemic lupus erythematosus (SLE) is an autoimmune disease with marked gender and ethnic disparities. We report a large transancestral association study of SLE using Immunochip genotype data from 27,574 individuals of European (EA), African (AA) and Hispanic Amerindian (HA) ancestry. We identify 58 distinct non-HLA regions in EA, 9 in AA and 16 in HA (B50% of these regions have multiple independent associations); these include 24 novel SLE regions (Po5 10 8), refined association signals in established regions, extended associations to additional ancestries, and a disentangled complex HLA multigenic effect. The risk allele count (genetic load) exhibits an accelerating pattern of SLE risk, leading us to posit a cumulative hit hypothesis for autoimmune disease. Comparing results across the three ancestries identifies both ancestry-dependent and ancestry-independent contributions to SLE risk. Our results are consistent with the unique and complex histories of the populations sampled, and collectively help clarify the genetic architecture and ethnic disparities in SL

    Secukinumab, an Interleukin-17A Inhibitor, in Ankylosing Spondylitis

    Get PDF
    Background Secukinumab is an anti–interleukin-17A monoclonal antibody that has been shown to control the symptoms of ankylosing spondylitis in a phase 2 trial. We conducted two phase 3 trials of secukinumab in patients with active ankylosing spondylitis. Methods In two double-blind trials, we randomly assigned patients to receive secukinumab or placebo. In MEASURE 1, a total of 371 patients received intravenous secukinumab (10 mg per kilogram of body weight) or matched placebo at weeks 0, 2, and 4, followed by subcutaneous secukinumab (150 mg or 75 mg) or matched placebo every 4 weeks starting at week 8. In MEASURE 2, a total of 219 patients received subcutaneous secukinumab (150 mg or 75 mg) or matched placebo at baseline; at weeks 1, 2, and 3; and every 4 weeks starting at week 4. At week 16, patients in the placebo group were randomly reassigned to subcutaneous secukinumab at a dose of 150 mg or 75 mg. The primary end point was the proportion of patients with at least 20% improvement in Assessment of Spondyloarthritis International Society (ASAS20) response criteria at week 16. Results In MEASURE 1, the ASAS20 response rates at week 16 were 61%, 60%, and 29% for subcutaneous secukinumab at doses of 150 mg and 75 mg and for placebo, respectively (P<0.001 for both comparisons with placebo); in MEASURE 2, the rates were 61%, 41%, and 28% for subcutaneous secukinumab at doses of 150 mg and 75 mg and for placebo, respectively (P<0.001 for the 150-mg dose and P=0.10 for the 75-mg dose). The significant improvements were sustained through 52 weeks. Infections, including candidiasis, were more common with secukinumab than with placebo during the placebo-controlled period of MEASURE 1. During the entire treatment period, pooled exposure-adjusted incidence rates of grade 3 or 4 neutropenia, candida infections, and Crohn’s disease were 0.7, 0.9, and 0.7 cases per 100 patient-years, respectively, in secukinumab-treated patients. Conclusions Secukinumab at a subcutaneous dose of 150 mg, with either subcutaneous or intravenous loading, provided significant reductions in the signs and symptoms of ankylosing spondylitis at week 16. Secukinumab at a subcutaneous dose of 75 mg resulted in significant improvement only with a higher intravenous loading dose. (Funded by Novartis Pharma; ClinicalTrials.gov numbers, NCT01358175 and NCT01649375.
    corecore