4,183 research outputs found

    Modeling and Testing for Joint Association Using a Genetic Random Field Model

    Full text link
    Substantial progress has been made in identifying single genetic variants predisposing to common complex diseases. Nonetheless, the genetic etiology of human diseases remains largely unknown. Human complex diseases are likely influenced by the joint effect of a large number of genetic variants instead of a single variant. The joint analysis of multiple genetic variants considering linkage disequilibrium (LD) and potential interactions can further enhance the discovery process, leading to the identification of new disease-susceptibility genetic variants. Motivated by the recent development in spatial statistics, we propose a new statistical model based on the random field theory, referred to as a genetic random field model (GenRF), for joint association analysis with the consideration of possible gene-gene interactions and LD. Using a pseudo-likelihood approach, a GenRF test for the joint association of multiple genetic variants is developed, which has the following advantages: 1. considering complex interactions for improved performance; 2. natural dimension reduction; 3. boosting power in the presence of LD; 4. computationally efficient. Simulation studies are conducted under various scenarios. Compared with a commonly adopted kernel machine approach, SKAT, GenRF shows overall comparable performance and better performance in the presence of complex interactions. The method is further illustrated by an application to the Dallas Heart Study.Comment: 17 pages, 4 tables, the paper has been published on Biometric

    Familial aggregation of atrial fibrillation in Iceland

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldAIMS: To examine the heritability of atrial fibrillation (AF) in Icelanders, utilizing a nationwide genealogy database and population-based data on AF. AF is a disorder with a high prevalence, which has been known to cluster in families, but the heritability of the common form has not been well defined. METHODS AND RESULTS: The study population included 5269 patients diagnosed since 1987 and age-sex-matched controls randomly selected from the genealogy database. Kinship coefficients (KC), expressed as genealogical index of familiality (GIF = average KC x 100,000), were calculated before and after exclusion of relatives separated by one to five meiotic events. Risk ratios (RR) were calculated for first- to fifth-degree relatives. The average pairwise GIF among patients with AF was 15.9 (mean GIF for controls 13.9, 95%CI = 13.3, 14.4); this declined to 15.4 (mean GIF for controls 13.6, 95%CI = 13.1, 14.2) after exclusion of relatives separated by one meiosis and to 13.7 (mean GIF for controls 12.6, 95%CI = 12.1, 13.2), 12.7 (mean GIF for controls 11.9, 95%CI = 11.4, 12.4), and 11.3 (mean GIF for controls 10.6, 95%CI = 10.1, 11.1) after exclusion of relatives within two, three, and four meioses, respectively (all P<0.00001). RRs among relative pairs also declined incrementally, from 1.77 in first-degree relatives to 1.36, 1.18, 1.10, and 1.05 in second- through fifth-degree relatives (all P<0.001), consistent with the declining proportion of alleles shared identically by descent. When the analysis was limited to subjects diagnosed with AF before the age of 60, first-degree relatives of the AF cases were nearly five times more likely to have AF than the general population. CONCLUSION: AF shows strong evidence of heritability among unselected patients in Iceland, suggesting that there may be undiscovered genetic variants underlying the risk of the common form of AF

    Chromosome 1p13 genetic variants antagonize the risk of myocardial infarction associated with high ApoB serum levels

    Get PDF
    PMCID: PMC3480949This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    A framework for interpreting genome-wide association studies of psychiatric disorders

    Get PDF
    Genome-wide association studies (GWAS) have yielded a plethora of new findings in the past 3 years. By early 2009, GWAS on 47 samples of subjects with attention-deficit hyperactivity disorder, autism, bipolar disorder, major depressive disorder and schizophrenia will be completed. Taken together, these GWAS constitute the largest biological experiment ever conducted in psychiatry (59 000 independent cases and controls, 7700 family trios and >40 billion genotypes). We know that GWAS can work, and the question now is whether it will work for psychiatric disorders. In this review, we describe these studies, the Psychiatric GWAS Consortium for meta-analyses of these data, and provide a logical framework for interpretation of some of the conceivable outcomes

    Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque

    Get PDF
    Carotid intima media thickness (cIMT) and plaque determined by ultrasonography are established measures of subclinical atherosclerosis that each predicts future cardiovascular disease events. We conducted a meta-analysis of genome-wide association data in 31,211 participants of European ancestry from nine large studies in the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. We then sought additional evidence to support our findings among 11,273 individuals using data from seven additional studies. In the combined meta-analysis, we identified three genomic regions associated with common carotid intima media thickness and two different regions associated with the presence of carotid plaque (P < 5 × 10 -8). The associated SNPs mapped in or near genes related to cellular signaling, lipid metabolism and blood pressure homeostasis, and two of the regions were associated with coronary artery disease (P < 0.006) in the Coronary Artery Disease Genome-Wide Replication and Meta-Analysis (CARDIoGRAM) consortium. Our findings may provide new insight into pathways leading to subclinical atherosclerosis and subsequent cardiovascular events

    Rare coding SNP in DZIP1 gene associated with late-onset sporadic Parkinson's disease

    Get PDF
    We present the first application of the hypothesis-rich mathematical theory to genome-wide association data. The Hamza et al. late-onset sporadic Parkinson's disease genome-wide association study dataset was analyzed. We found a rare, coding, non-synonymous SNP variant in the gene DZIP1 that confers increased susceptibility to Parkinson's disease. The association of DZIP1 with Parkinson's disease is consistent with a Parkinson's disease stem-cell ageing theory.Comment: 14 page

    Novel genetic analysis for case-control genome-wide association studies: quantification of power and genomic prediction accuracy

    Get PDF
    Genome-wide association studies (GWAS) are routinely conducted for both quantitative and binary (disease) traits. We present two analytical tools for use in the experimental design of GWAS. Firstly, we present power calculations quantifying power in a unified framework for a range of scenarios. In this context we consider the utility of quantitative scores (e.g. endophenotypes) that may be available on cases only or both cases and controls. Secondly, we consider, the accuracy of prediction of genetic risk from genome-wide SNPs and derive an expression for genomic prediction accuracy using a liability threshold model for disease traits in a case-control design. The expected values based on our derived equations for both power and prediction accuracy agree well with observed estimates from simulations

    High throughput analysis of epistasis in genome-wide association studies with BiForce

    Get PDF
    Motivation: Gene–gene interactions (epistasis) are thought to be important in shaping complex traits, but they have been under-explored in genome-wide association studies (GWAS) due to the computational challenge of enumerating billions of single nucleotide polymorphism (SNP) combinations. Fast screening tools are needed to make epistasis analysis routinely available in GWAS. Results: We present BiForce to support high-throughput analysis of epistasis in GWAS for either quantitative or binary disease (case–control) traits. BiForce achieves great computational efficiency by using memory efficient data structures, Boolean bitwise operations and multithreaded parallelization. It performs a full pair-wise genome scan to detect interactions involving SNPs with or without significant marginal effects using appropriate Bonferroni-corrected significance thresholds. We show that BiForce is more powerful and significantly faster than published tools for both binary and quantitative traits in a series of performance tests on simulated and real datasets. We demonstrate BiForce in analysing eight metabolic traits in a GWAS cohort (323 697 SNPs, >4500 individuals) and two disease traits in another (>340 000 SNPs, >1750 cases and 1500 controls) on a 32-node computing cluster. BiForce completed analyses of the eight metabolic traits within 1 day, identified nine epistatic pairs of SNPs in five metabolic traits and 18 SNP pairs in two disease traits. BiForce can make the analysis of epistasis a routine exercise in GWAS and thus improve our understanding of the role of epistasis in the genetic regulation of complex traits. Availability and implementation: The software is free and can be downloaded from http://bioinfo.utu.fi/BiForce/. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online

    A rare SNP in pre-miR-34a is associated with increased levels of miR-34a in pancreatic beta cells.

    Get PDF
    Open Access Article.Changes in the levels of specific microRNAs (miRNAs) can reduce glucose-stimulated insulin secretion and increase beta-cell apoptosis, two causes of islet dysfunction and progression to type 2 diabetes. Studies have shown that single nucleotide polymorphisms (SNPs) within miRNA genes can affect their expression. We sought to determine whether miRNAs, with a known role in beta-cell function, possess SNPs within the pre-miRNA structure which can affect their expression. Using published literature and dbSNP, we aimed to identify miRNAs with a role in beta-cell function that also possess SNPs within the region encoding its pre-miRNA. Following transfection of plasmids, encoding the pre-miRNA and each allele of the SNP, miRNA expression was measured. Two rare SNPs located within the pre-miRNA structure of two miRNA genes important to beta-cell function (miR-34a and miR-96) were identified. Transfection of INS-1 and MIN6 cells with plasmids encoding pre-miR-34a and the minor allele of rs72631823 resulted in significantly (p < 0.05) higher miR-34a expression, compared to cells transfected with plasmids encoding the corresponding major allele. Similarly, higher levels were also observed upon transfection of HeLa cells. Transfection of MIN6 cells with plasmids encoding pre-miR-96 and each allele of rs41274239 resulted in no significant differences in miR-96 expression. A rare SNP in pre-miR-34a is associated with increased levels of mature miR-34a. Given that small changes in miR-34a levels have been shown to cause increased levels of beta-cell apoptosis this finding may be of interest to studies looking at determining the effect of rare variants on type 2 diabetes susceptibility
    corecore