32 research outputs found

    The High Arctic in Extreme Winters: Vortex, Temperature, and MLS and ACE-FTS Trace Gas Evolution

    Get PDF
    The first three Canadian Arctic Atmospheric Chemistry Experiment (ACE) Validation Campaigns at Eureka (80° N, 86° W) were during two extremes of Arctic winter variability: Stratospheric sudden warmings (SSWs) in 2004 and 2006 were among the strongest, most prolonged on record; 2005 was a record cold winter. New satellite measurements from ACE-Fourier Transform Spectrometer (ACE-FTS), Sounding of the Atmosphere using Broadband Emission Radiometry, and Aura Microwave Limb Sounder (MLS), with meteorological analyses and Eureka lidar and radiosonde temperatures, are used to detail the meteorology in these winters, to demonstrate its influence on transport and chemistry, and to provide a context for interpretation of campaign observations. During the 2004 and 2006 SSWs, the vortex broke down throughout the stratosphere, reformed quickly in the upper stratosphere, and remained weak in the middle and lower stratosphere. The stratopause reformed at very high altitude, above where it could be accurately represented in the meteorological analyses. The 2004 and 2006 Eureka campaigns were during the recovery from the SSWs, with the redeveloping vortex over Eureka. 2005 was the coldest winter on record in the lower stratosphere, but with an early final warming in mid-March. The vortex was over Eureka at the start of the 2005 campaign, but moved away as it broke up. Disparate temperature profile structure and vortex evolution resulted in much lower (higher) temperatures in the upper (lower) stratosphere in 2004 and 2006 than in 2005. Satellite temperatures agree well with Eureka radiosondes, and with lidar data up to 50–60 km. Consistent with a strong, cold upper stratospheric vortex and enhanced radiative cooling after the SSWs, MLS and ACE-FTS trace gas measurements show strongly enhanced descent in the upper stratospheric vortex during the 2004 and 2006 Eureka campaigns compared to that in 2005

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Lagrangian approach for stratospheric aerosol and gas experiment (SAGE) II profile intercomparisons

    No full text
    Trajectory calculations are employed to identify Stratospheric Aerosol and Gas Experiment (SAGE) II flights sampling the same air mass as is observed by a groundbased aerosol lidar at Garmisch-Partenkirchen, Germany (47.5°N, 11.1°E, 735 m above sea level), during the periods of January-April 1993 and January-December 1998. Intercomparisons between lidar-observed and SAGE II-derived backscatters at 532 nm are conducted. Percentage differences between trajectory-tracked SAGE II profiles and ground-based lidar observations with respect to aerosol lidar are generally within 20 - 40 %, though localized discrepancies > 50 % are found for some cases. In addition, aerosol extinction, aerosol to molecular extinction ratio, and ozone mixing ratio profiles obtained from the SAGE II flights overpassing the vicinity of Garmisch-Partenkirchen during the January-April 1993 period are compared with profiles obtained from corresponding trajectory-tracked SAGE II flights. Percentage discrepancies between SAGE II ozone profiles are generally within 10 - 20 % above the Junge layer. Data comparisons for aerosol profiles show mixed results. While some cases agree within the error bars, there are several cases where percentage discrepancies exceed 50 %

    High resolution simulation of recent Arctic and Antarctic stratospheric chemical ozone loss compared to observations

    Get PDF
    Simulations of polar ozone losses were performed using the three-dimensional high-resolution (1° × 1°) chemical transport model MIMOSA-CHIM. Three Arctic winters 1999–2000, 2001–2002, 2002–2003 and three Antarctic winters 2001, 2002, and 2003 were considered for the study. The cumulative ozone loss in the Arctic winter 2002–2003 reached around 35% at 475K inside the vortex, as compared to more than 60% in 1999–2000. During 1999–2000, denitrification induces a maximum of about 23% extra ozone loss at 475K as compared to 17% in 2002–2003. Unlike these two colder Arctic winters, the 2001–2002 Arctic was warmer and did not experience much ozone loss. Sensitivity tests showed that the chosen resolution of 1° ×1° provides a better evaluation of ozone loss at the edge of the polar vortex in high solar zenith angle conditions. The simulation results for ozone, ClO, HNO3, N2O, and NOy for winters 1999–2000 and 2002–2003 were compared with measurements on board ER-2 and Geophysica aircraft respectively. Sensitivity tests showed that increasing heating rates calculated by the model by 50% and doubling the PSC (Polar Stratospheric Clouds) particle density (from 5 × 10-3 to 10-2 cm-3) refines the agreement with in situ ozone, N2O and NOy levels. In this configuration, simulated ClO levels are increased and are in better agreement with observations in January but are overestimated by about 20% in March. The use of the Burkholder et al. (1990) Cl2O2 absorption cross-sections slightly increases further ClO levels especially in high solar zenith angle conditions. Comparisons of the modelled ozone values with ozonesonde measurement in the Antarctic winter 2003 and with Polar Ozone and Aerosol Measurement III (POAM III) measurements in the Antarctic winters 2001 and 2002, shows that the simulations underestimate the ozone loss rate at the end of the ozone destruction period. A slightly better agreement is obtained with the use of Burkholder et al. (1990) Cl2O2 absorption cross-sections

    Assessing the losses of HCFC-22 using ACE-FTS measurements

    Full text link
    The annual springtime minimum in stratospheric ozone over the Antarctic is primarily caused by catalytic reactions of ozone and chlorine. The Montreal Protocol on Substances that Deplete the Ozone Layer (with its subsequent amendments) restricts the emissions of ozone depleting substances. HCFC-22 has been the primary replacement for both CFC-11 and CFC-12, which has led to an increase in its atmospheric abundance. The Atmospheric Chemistry Experiment (ACE) is a mission on-board the Canadian satellite SCISAT. The primary instrument on SCISAT is a highresolution infrared Fourier Transform Spectrometer (ACE-FTS). With its wide spectral range, the ACE-FTS is capable of measuring an extensive range of gases including key CFC and HCFC species. The altitude distribution from the ACE-FTS profiles provides information that is complementary to the ground-based measurements that have been used to monitor these species. The ACE-FTS measurements compare well with surface in situ and balloon measurements. A preliminary validation of HCFC-22 using ground-based FTSs is discussed. The zonal mean distribution of HCFC-22 as observed by ACE-FTS is presented. The global distributions of HCFC-22 have been compared to the Global Modelling Initiative (GMI) Combined Stratospheric-Tropospheric Model, a chemistry and transport model. Large differences between the model and ACE-FTS measurements of HCFC-22 reveal issues with the boundary value mixing ratios. The comparison of stratospheric measurements with GMI suggest that there may be a missing loss process in the stratosphere, some issues with transport circulation and polar cap averaging in the current run, or a combination of the two processes. We propose the reaction of HCFC-22 with atomic chlorine as a potentially important loss process in the lowermost stratosphere and the lower stratosphere

    Global carbon tetrachloride distributions obtained from the Atmospheric Chemistry Experiment (ACE)

    Get PDF
    The first study of the global atmospheric distribution of carbon tetrachloride (CC1), as a function of altitude and latitude, was performed using solar occultation measurements obtained by the Atmospheric Chemistry Experiment (ACE) mission using Fourier transform spectroscopy. A total of 8703 profile measurements were taken in the upper troposphere and lower stratosphere between February 2004 and August 2007. The zonal distribution of carbon tetrachloride displays a slight hemispheric asymmetry and decreasing concentration with increasing altitude at all latitudes. Maximum carbon tetrachloride concentrations are situated below 10 km in altitude with VMR (Volume Mixing Ratio) values of 100-130 ppt (parts per trillion). The highest concentrations are located about the Equator and at mid-latitudes, particularly for latitudes in heavily industrialised regions (2045° N), with values declining towards the poles. Global distributions obtained from ACE were compared with predictions from three chemistry transport models showing good agreement in terms of the vertical gradient despite an overall offset. The ACE dataset gives unique global and temporal coverage of carbon tetrachloride and its transport through the atmosphere. An estimated lifetime for carbon tetrachloride of 34±5 years was determined through correlation with CFC-11
    corecore