204 research outputs found

    A swift approach for identifying vulnerable linear transport infrastructures in areas prone to floods and erosion

    Get PDF
    Linear transport infrastructures are essential for the socio-economic development of industrialized countries. However, adverse meteorological and hydrogeological events can result in significant economic losses.Globally, floods have the most substantial socio-economic impact. Climate Change, due to the extent of transport infrastructures over flood-prone territories, is a very important factor in worsening flood risk.The main objective of this study is to identify the sections of the hydrographic network that are susceptible to flood and erosion hazards where road infrastructures are located. The Metropolitan City of Cagliari (Sardinia, Italy) is selected as test site, due to the presence of several coastal watersheds and of a high population density.A swift methodological approach, based on already available datasets from public repositories and GIS analyses, is presented. This approach includes: i) geomorphological characterization of the hydrographic network; ii) census of stream tracts where bridges were damaged in past flood events; iii) identification of potentially critical tracts (PCT), based on similar geomorphological conditions; iv) multi-temporal satellite imagery analysis of PCT for the identification of flood-prone areas and, therefore, vulnerable road crossings.The adopted methodology has proved to be effective for the identification of vulnerable road crossings over wide portion of territories, identifying critical sites that need further investigation

    Ig Glycosylation in Ulcerative Colitis: It’s Time for New Biomarkers

    Get PDF
    Background: Ulcerative colitis (UC) is a chronic relapsing disease, which needs a continue monitoring, especially during biological therapies. An increasing number of patients is treated with anti-Tumor Necrosis factor (TNF) drugs, and current research is focalized to identify biomarkers able to monitor the disease and to predict therapeutic outcome. Methods: We enrolled consecutive UC patients treated with anti-TNF, naĂŻve to biologic drugs. Therapeutic outcome was evaluated after 54 weeks of treatment in terms of clinical remission (Partial Mayo Score -PMS- <2) and mucosal healing (Mayo Endoscopic Score <2). On serum samples collected at baseline and after 54 weeks of treatment, a Lectin-based ELISA assay was performed, and specific glycosylation patterns were evaluated by biotin-labelled lectins. We have also collected 21 healthy controls (NHS) samples, age and sex-matched. Results: Out of 44 UC patients enrolled, 22 achieved clinical remission and mucosal healing after 54 weeks. At baseline, when Protein A was used as coating, UC patients non-responders showed a reduced reactivity to Jacalin (JAC) in comparison with NHS (p = 0.04). After one year of treatment, a decrease in JAC binding was seen only in responders, in comparison with baseline (p = 0.04). When JAC binding was tested selecting IgG by means of Fab anti-IgG Fab, UC patients displayed an increased reactivity after anti-TNF therapy (p < 0,0001 vs controls). At baseline, PMS inversely correlates with JAC binding when Fab anti-IgG Fab was used in solid phase (r2 = 0,2211; p = 0,0033). Patients with higher PMS at baseline (PMS ≄5) presented lower binding capacity for JAC in comparison with NHS and with lower PMS patients (p = 0,0135 and p = 0,0089, respectively). Conclusion: Ig glycosylation was correlated with clinical and endoscopic activity in patients with UC. JAC protein A-selected Ig showed a possible role in predicting therapeutic effectiveness. If these data would be confirmed, Ig glycosylation could be used as biomarker in UC

    Osteopontin plasma levels and accelerated atherosclerosis in patients with CAD undergoing PCI: a prospective clinical study.

    Get PDF
    OBJECTIVES: Growing evidence supports the role played by inflammation in atherosclerosis. Identifying sensitive biomarkers is useful in predicting accelerated atherosclerosis. We investigated prospectively the relationship between plasma levels of inflammatory biomarkers [osteopontin, C-reactive protein (CRP), interleukin-6 (IL-6)] and instent restenosis, and rapid coronary plaque progression in patients with coronary artery disease (CAD) undergoing percutaneous coronary intervention (PCI). METHODS: We studied 77 patients with CAD: 45 affected by unstable angina/non-ST elevation myocardial infarction [acute coronary syndrome (ACS)], and 32 by chronic coronary syndrome (CCS). Plasma osteopontin, IL-6, and CRP levels were measured before intervention in all patients; measurements were carried out on the basis of the following time course at 1,15, 30, 90, and 180 days follow-up in a subgroup of 39 consenting patients. Clinical and biohumoral data were correlated with baseline and 6-month PCI follow-up angiography. RESULTS: Osteopontin, IL-6, and CRP were higher in patients with ACS than in those with CCS (analysis of variance: P<0.001, 0.05, and 0.05, respectively). Baseline osteopontin levels proved to be associated with rapid coronary plaque progression (P=0.005) and instent restenosis (P=0.05). The highest osteopontin levels were found in patients with CAD with both rapid plaque progression and instent restenosis (P=0.003). PCI increased inflammatory markers acutely, and osteopontin remained elevated in patients with ACS. Patients with ACS showed a higher percentage (74%) of rapid plaque progression than those with CCS (26%) (P<0.05). CONCLUSION: The study prospectively shows the link between inflammatory status and accelerated atherosclerosis in patients with CAD undergoing PCI. The baseline and persistent rise of osteopontin is an expression of its contribution to the accelerated plaque progression, and therefore osteopontin may be a useful prognostic biomarker

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    Hydrogels based on chitosan and dextran as potential drug delivery systems

    No full text
    The release of human growth hormone (GH) from bioartificial polymeric materials in the form of hydrogels, was measured in vitro for up to 3 weeks. Poly(vinyl-alcohol) (PVA) was blended, in different ratios, with two biological polymers, dextran and chitosan respectively. These blends were used to prepare hydrogels, using a freeze-thawing method. The hydrogels were loaded with GH, and their potential use as delivery systems was investigated. The release with time of PVA, in aqueous medium, was also monitored and evaluated. Scanning electron microscopy was used to investigate the structure of the hydrogels. The results obtained indicated that GH can be released from both dextran/PVA and chitosan/ PVA hydrogels. The initial GH concentration used for sample loading affected the total quantity of GH released but not the pattern of release. The amount of GH released was affected by the content of the biological component. The percentage of PVA released was low but it was, however, related to the content of chitosan and dextran in the blends. The release of human growth hormone (GH) from bioartificial polymeric materials in the form of hydrogels, was measured in vitro for up to 3 weeks. Poly(vinyl-alcohol) (PVA) was blended, in different ratios, with two biological polymers, dextran and chitosan respectively. These blends were used to prepare hydrogels, using a freeze-thawing method. The hydrogels were loaded with GH, and their potential use as delivery systems was investigated. The release with time of PVA, in aqueous medium, was also monitored and evaluated. Scanning electron microscopy was used to investigate the structure of the hydrogels. The results obtained indicated that GH can be released from both dextran/PVA and chitosan/PVA hydrogels. The initial GH concentration used for sample loading affected the total quantity of GH released but not the pattern of release. The amount of GH released was affected by the content of the biological component. The percentage of PVA released was low but it was, however, related to the content of chitosan and dextran in the blends
    • 

    corecore