15 research outputs found

    Effets direct et semi-direct des aérosols en Afrique de l'ouest pendant la saison sèche

    Get PDF
    Ces travaux de thèse présentent l'étude du forçage radiatif direct et semi-direct ainsi que les impacts climatiques associés, qu'exercent les particules d'aérosols désertiques et de feux de biomasse sur le climat régional ouest Africain pendant la saison sèche. Dans ce cadre, le modèle de climat à été utilisé en lien avec les observations in-situ des campagnes DABEX/AMMA-SOP0, les mesures photométriques (AERONET/PHOTONS) et satellitaire (PARASOL,MODIS,OMIetMISR). Le modèle RegCM3 configuré spécifiquement pour représenter les aérosols d'Afrique de l'ouest a été évalué au cours d'une simulation de la saison sèche 2006. Dans cette configuration, le modèle s'est montré capable d'estimer raisonnablement les quantités d'aérosols pour des applications climatiques et les variations d'albédo de simple diffusion. Pendant les mois de décembre et janvier, l'albédo de simple diffusion simulé au dessus du Sahel se situe entre 0.81 et 0.83 (à 440 nm) quand les aérosols de feux de biomasse dominent le mélange atmosphérique. Pendant les mois de mars et avril, pour lesquels les aérosols désertiques dominent, l'albédo de simple diffusion simulé se situe entre 0.90 et 0.92 (à 440 nm). Le forçage radiatif direct au sommet de l'atmosphère (visible + infrarouge) est majoritairement négatif sur l'ensemble du domaine et compris entre -5.0 W /m2 et -4.0 W /m2. Sur le Sahara, le forçage radiatif direct TOA est proche de zéro (-0.15 W /m2). La grande divergence entre le forçage radiatif direct au sommet de l'atmosphère et en surface indique que l'absorption est importante au sein de l'atmosphère (forçage radiatif direct atmosphèrique de +11.47 et +24.40 W /m2 au dessus du Sahara et du Sahel, respectivement). Du fait de leur albédo de simple diffusion relativement bas, les aérosols de feux de biomasse, contribuent principalement à ce rechauffement atmosphérique. Ceci se traduit à l'échelle régionale par un taux d'échauffement radiatif atmosphérique (dans le visible) compris entre +0.2 et +0.6 K /jour en moyenne journalière dans la couche d'aérosol de feux de biomasse localisée entre 2 et 5 km. Deux simulations à plus longue échéance sur la période 2001-2006 ont été menées pour étudier les conséquences de ce forçage radiatif sur le climat régional pendant la saison sèche. Une simulation DUST (aérosols désertiques) et BBDUST (aérosols désertiques + aérosols de feux) sont réalisées en prenant en compte les rétroactions liées au forçage radiatif direct. L'important forçage radiatif en surface réduit l'énergie radiative disponible au sol. Ceci conduit à des perturbations significatives du bilan energétique en surface. Au dessus du Sahara, les réductions de flux de chaleur sensible sont proches dans les expériences DUST et BBDUST (respectivement -5.52 W /m2 et -6.65 W /m2). Au niveau du Sahel en revanche, l'inclusion des aérosols de feux de biomasse diminue plus fortement le flux de chaleur sensible (-16.59 W /m2 dans l'expérience BBDUST et -5.37 W /m2 dans l'expérience DUST). La réponse du flux de chaleur latente est plus complexe et dépend à la fois de la localisation des sources d'aérosols et des espèces considérées. Ainsi, la réponse des champs de précipitations simulés due aux effets radiatifs direct et semi-direct des aérosols diffère fortement entre les deux expériences. Dans l'expérience DUST, les précipitations sont réduites sur la majorité du domaine avec une diminution maximum au centre du continent. Dans l'expérience BBDUST, les aérosols de feux de biomasse augmentent les précipitations pour cette sous-région. L'augmentation des précipitations semble reliée à une augmentation locale de l'activité convective au dessus de 500 hPa sous l'effet d'un mécanisme de pompe thermique.This work investigates direct and semi-direct aerosol radiative forcing and the associated climatic impacts over the West African region during the dry-season. The regional climate model version 3 (RegCM3) is used in combination with in-situ observations from the AMMA­SOP0/DABEX field campaigns and remote sensing observations from sunphotometry (AE­RONET/PHOTON) and satellite platforms (PARASOL, MODIS, OMI and MISR). RegCM3 is specifically configured to represent West African aerosols and is evaluated for the 2006 dry season. In this setup, RegCM3 is found to represent aerosol loadings accurately enough for climatic applications, with the model simulating consistent aerosol single scattering albedo variations. In december and January, when smoke aerosols dominate the background aerosol loading, the aerosol single scattering albedo over the Sahel ranges from 0.81 0.83 (at 440 nm). During the months of march and april, when dust aerosol are mainly observed, the simu­lated aerosol single scattering albedo ranges between 0.90 and 0.92 (at 440 nm). The direct aerosol radiative forcing (visible + infrared) estimated at top of the atmosphere is essentially negative over the whole domain, with values ranging from -5 W /m2 to -4.0 W /m2. Over the Sahara, the direct aerosol radiative forcing at top of the atmosphere (TOA) is close to zero (-0.15 W /m2). The large difference between the TOA and surface direct radiative forcing in­dicates strong radiative absorption in the atmosphere (+11.47 and +24.40 W /m2 over the Sahara and Sahel, respectively). Due to their relatively low single scattering albedo, smoke aerosols are the dominant contributors to atmospheric heating. At the regional scale, this results in a daily average atmospheric heating rates ranging between +0.2 and +0.6 K /day within the main smoke layers (approximately 2 and 5 km above the ground surface). Two lon­ger simulations covering the 2001-2006 period are also conducted in order to investigate the effects of this radiative forcing on the regional climate during the dry season. A simulation including dust aerosols (DUSTexp) and a simulation including both dust and smoke aerosols (BBDUSTexp) are performed in order to take into account the dynamical feedbacks associa­ted with direct and semi-direct aerosol radiative forcing. The strong aerosol radiative forcing at surface decreases available radiation, which leads to significant perturbations of the sur­face energy balance. Over the Sahara, sensible heat flux anomalies are similar in the two experiments (-5.52 W /m2 and -6.65 W /m2, in the DUSTexp and BBDUSTexp, respectively). Over the Sahel, the decrease is more significant in BBDUSTexp simulation (-16.59 W /m2 compared to -5.37 W /m2 in DUSTexp). Changes in latent heat fluxes are more complex and depend simultaneously on aerosols emission locations and the aerosol species present. As a result, the precipitation changes due to aerosol radiative effects are very different within the two experiments. In the DUSTexp, precipitation is decreased over most of the domain with a maximum decrease over the central part of the continent. For the BBDUSTexp, smoke aero­sols tend to enhance precipitation over this sub-region. This increase seems to be related to a local increase of convective activity above 500 hPa, resulting from an elevated heat pump mechanism

    Opportunistic experiments to constrain aerosol effective radiative forcing

    Get PDF
    Aerosol–cloud interactions (ACIs) are considered to be the most uncertain driver of present-day radiative forcing due to human activities. The nonlinearity of cloud-state changes to aerosol perturbations make it challenging to attribute causality in observed relationships of aerosol radiative forcing. Using correlations to infer causality can be challenging when meteorological variability also drives both aerosol and cloud changes independently. Natural and anthropogenic aerosol perturbations from well-defined sources provide “opportunistic experiments” (also known as natural experiments) to investigate ACI in cases where causality may be more confidently inferred. These perturbations cover a wide range of locations and spatiotemporal scales, including point sources such as volcanic eruptions or industrial sources, plumes from biomass burning or forest fires, and tracks from individual ships or shipping corridors. We review the different experimental conditions and conduct a synthesis of the available satellite datasets and field campaigns to place these opportunistic experiments on a common footing, facilitating new insights and a clearer understanding of key uncertainties in aerosol radiative forcing. Cloud albedo perturbations are strongly sensitive to background meteorological conditions. Strong liquid water path increases due to aerosol perturbations are largely ruled out by averaging across experiments. Opportunistic experiments have significantly improved process-level understanding of ACI, but it remains unclear how reliably the relationships found can be scaled to the global level, thus demonstrating a need for deeper investigation in order to improve assessments of aerosol radiative forcing and climate change

    Strong constraints on aerosol-cloud interactions from volcanic eruptions.

    Get PDF
    Aerosols have a potentially large effect on climate, particularly through their interactions with clouds, but the magnitude of this effect is highly uncertain. Large volcanic eruptions produce sulfur dioxide, which in turn produces aerosols; these eruptions thus represent a natural experiment through which to quantify aerosol-cloud interactions. Here we show that the massive 2014-2015 fissure eruption in Holuhraun, Iceland, reduced the size of liquid cloud droplets-consistent with expectations-but had no discernible effect on other cloud properties. The reduction in droplet size led to cloud brightening and global-mean radiative forcing of around -0.2 watts per square metre for September to October 2014. Changes in cloud amount or cloud liquid water path, however, were undetectable, indicating that these indirect effects, and cloud systems in general, are well buffered against aerosol changes. This result will reduce uncertainties in future climate projections, because we are now able to reject results from climate models with an excessive liquid-water-path response

    Opportunistic experiments to constrain aerosol effective radiative forcing

    Get PDF
    Aerosol–cloud interactions (ACIs) are considered to be the most uncertain driver of present-day radiative forcing due to human activities. The nonlinearity of cloud-state changes to aerosol perturbations make it challenging to attribute causality in observed relationships of aerosol radiative forcing. Using correlations to infer causality can be challenging when meteorological variability also drives both aerosol and cloud changes independently. Natural and anthropogenic aerosol perturbations from well-defined sources provide “opportunistic experiments” (also known as natural experiments) to investigate ACI in cases where causality may be more confidently inferred. These perturbations cover a wide range of locations and spatiotemporal scales, including point sources such as volcanic eruptions or industrial sources, plumes from biomass burning or forest fires, and tracks from individual ships or shipping corridors. We review the different experimental conditions and conduct a synthesis of the available satellite datasets and field campaigns to place these opportunistic experiments on a common footing, facilitating new insights and a clearer understanding of key uncertainties in aerosol radiative forcing. Cloud albedo perturbations are strongly sensitive to background meteorological conditions. Strong liquid water path increases due to aerosol perturbations are largely ruled out by averaging across experiments. Opportunistic experiments have significantly improved process-level understanding of ACI, but it remains unclear how reliably the relationships found can be scaled to the global level, thus demonstrating a need for deeper investigation in order to improve assessments of aerosol radiative forcing and climate change

    Simulation of aerosol radiative effects over West Africa during DABEX and AMMA SOP-0

    No full text
    International audienceThe regional climate model RegCM3 has been used to assess optical properties and clear-sky direct radiative forcing (DRF) of mineral dust and carbonaceous aerosols over West Africa for the period October 2005 to April 2006. Our results display a significant seasonal variation of the aerosol single scattering albedo (SSA) due to varying contributions from biomass burning (BB) and dust. During December-January, simulated SSA values dropped to around 0.81-0.83 at 440 nm and to 0.80-0.85 at 675 nm when absorbing aerosols from biomass burning dominate the mixture. During March and April, when mineral dust dominates, simulated SSA values increased reaching around 0.90-0.92 at 440 nm and 0.94-0.96 at 675 nm. The simulated aerosol optical thickness (AOT) was maximum over central Africa where it far exceeded estimates of AOT from satellite which showed the greatest AOT in the gulf of Guinea. This discrepancy was linked to an overestimation of BB emissions in central Africa and a possible underestimation of AOT over central Africa due a high occurrence of cloud and associated difficulties in cloud screening. The DRF calculations were extremely sensitive to aerosol optical properties and underlying surface albedo. Over dark surfaces, the sum of shortwave (SW) and longwave (LW) top of the atmosphere (TOA) direct radiative forcing averaged from December to February was negative (−5.25 to −4.0 W/m2) while over bright surfaces it was close to zero (−0.15 W/m2). Large differences between SW surface and SW TOA direct radiative forcing indicated that SW absorption had an important influence on the radiative budget. The SW radiative heating rate associated with the aerosol reached 1.2 K/d at local noon (diurnal mean of 0.40 K/d) over Niamey (∼13.5°N, 2°E) and peaked at altitudes of 2-4 km, corresponding to the BB aerosol layer
    corecore