22 research outputs found

    Age and date for early arrival of the Acheulian in Europe (Barranc de la Boella, la Canonja, Spain)

    Get PDF
    The first arrivals of hominin populations into Eurasia during the Early Pleistocene are currently considered to have occurred as short and poorly dated biological dispersions. Questions as to the tempo and mode of these early prehistoric settlements have given rise to debates concerning the taxonomic significance of the lithic assemblages, as trace fossils, and the geographical distribution of the technological traditions found in the Lower Palaeolithic record. Here, we report on the Barranc de la Boella site which has yielded a lithic assemblage dating to ,1 million years ago that includes large cutting tools (LCT). We argue that distinct technological traditions coexisted in the Iberian archaeological repertoires of the late Early Pleistocene age in a similar way to the earliest sub-Saharan African artefact assemblages. These differences between stone tool assemblages may be attributed to the different chronologies of hominin dispersal events. The archaeological record of Barranc de la Boella completes the geographical distribution of LCT assemblages across southern Eurasia during the EMPT (Early-Middle Pleistocene Transition, circa 942 to 641 kyr). Up to now, chronology of the earliest European LCT assemblages is based on the abundant Palaeolithic record found in terrace river sequences which have been dated to the end of the EMPT and later. However, the findings at Barranc de la Boella suggest that early LCT lithic assemblages appeared in the SW of Europe during earlier hominin dispersal episodes before the definitive colonization of temperate Eurasia took place.The research at Barranc de la Boella has been carried out with the financial support of the Spanish Ministerio de Economı´a y Competitividad (CGL2012- 36682; CGL2012-38358, CGL2012-38434-C03-03 and CGL2010-15326; MICINN project HAR2009-7223/HIST), Generalitat de Catalunya, AGAUR agence (projects 2014SGR-901; 2014SGR-899; 2009SGR-324, 2009PBR-0033 and 2009SGR-188) and Junta de Castilla y Leo´n BU1004A09. Financial support for Barranc de la Boella field work and archaeological excavations is provided by the Ajuntament de la Canonja and Departament de Cultura (Servei d’Arqueologia i Paleontologia) de la Generalitat de Catalunya. A. Carrancho’s research was funded by the International Excellence Programme, Reinforcement subprogramme of the Spanish Ministry of Education. I. Lozano-Ferna´ndez acknowledges the pre-doctoral grant from the Fundacio´n Atapuerca. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    El Miocè inferior de la conca del Vallès-Penedès: un registre excepcional dels canvis climàtics i faunístics.

    Get PDF
    Les intervencions paleontològiques recents han mostrat que el registre de vertebrats continentals del Miocè inferior de la conca del Vallès-Penedès és molt més ric i continu del que es pensava. Avui dia es coneixen una vintena de jaciments que han lliurat tant microvertebrats com macrovertebrats. Els nostres estudis biostratigràfics han permès una datació precisa dels diferents jaciments i també dels principals esdeveniments faunístics i climàtics

    Uneven Data Quality and the Earliest Occupation of Europe—the Case of Untermassfeld (Germany)

    Get PDF
    The database regarding the earliest occupation of Europe has increased significantly in quantity and quality of data points over the last two decades, mainly through the addition of new sites as a result of long-term systematic excavations and large-scale prospections of Early and early Middle Pleistocene exposures. The site distribution pattern suggests an ephemeral presence of hominins in the south of Europe from around 1 million years ago onward, with occasional short northward expansions along the western coastal areas when temperate conditions permitted. From around 600,000–700,000 years ago, Acheulean artefacts appear in Europe and somewhat later hominin presence seems to pick up, with more sites and now some also present in colder climatic settings. It is again only later, around 350,000 years ago, that the first sites show up in more continental, central parts of Europe, east of the Rhine. A series of recent papers on the Early Pleistocene palaeontological site of Untermassfeld (Thuringia, Germany) makes claims that are of great interest for studies of earliest Europe and are at odds with the described pattern: the papers suggest that Untermassfeld has yielded stone tools and humanly modified faunal remains, evidence for a 1 million years old hominin presence in European continental mid-latitudes, and additional evidence that hominins were well-established in Europe already around that time period. Here, we evaluate these claims and demonstrate that these studies are severely flawed in terms of data on provenance of the materials studied and in the interpretation of faunal remains and lithics as testifying to a hominin presence at the site. In actual fact, any reference to the Untermassfeld site as an archaeological one is unwarranted. Furthermore, it is not the only European Early Pleistocene site where inferred evidence for hominin presence is problematic. The strength of the spatiotemporal patterns of hominin presence and absence depends on the quality of the data points we work with, and database maintenance, including critical evaluation of new sites, is crucial to advance our knowledge of the expansions and contractions of hominin ranges during the Pleistocene

    A complex gene regulatory mechanism that operates at the nexus of multiple RNA processing decisions.

    No full text
    Expression of crs1 pre-mRNA, encoding a meiotic cyclin, is blocked in actively growing fission yeast cells by a multifaceted mechanism. The most striking feature is that crs1 transcripts are continuously synthesized in vegetative cells, but are targeted for degradation rather than splicing and polyadenylation. Turnover of crs1 RNA requires the exosome, similar to previously described nuclear surveillance and silencing mechanisms, but does not involve a non-canonical poly(A) polymerase. Instead, crs1 transcripts are targeted for destruction by a factor previously implicated in turnover of meiotic RNAs in growing cells. Like exosome mutants, mmi1 mutants splice and polyadenylate vegetative crs1 transcripts. Two regulatory elements are located at the 3′ end of the crs1 gene, consistent with the increased accumulation of spliced RNA in polyadenylation factor mutants. This highly integrated regulatory strategy may ensure a rapid response to adverse conditions, thereby guaranteeing survival
    corecore