19 research outputs found

    PIH64 Burden of 100 Diseases within General Practice: Results of the EPI3 Program

    Get PDF

    Displaying the Heterogeneity of the SN 2002cx-like Subclass of Type Ia Supernovae with Observations of the Pan-STARRS-1 Discovered SN2009ku

    Full text link
    SN2009ku, discovered by Pan-STARRS-1, is a Type Ia supernova (SNIa), and a member of the distinct SN2002cx-like class of SNeIa. Its light curves are similar to the prototypical SN2002cx, but are slightly broader and have a later rise to maximum in g. SN2009ku is brighter (~0.6 mag) than other SN2002cx-like objects, peaking at M_V = -18.4 mag - which is still significantly fainter than typical SNeIa. SN2009ku, which had an ejecta velocity of ~2000 kms^-1 at 18 days after maximum brightness is spectroscopically most similar to SN2008ha, which also had extremely low-velocity ejecta. However, SN2008ha had an exceedingly low luminosity, peaking at M_V = -14.2 mag, ~4 mag fainter than SN2009ku. The contrast of high luminosity and low ejecta velocity for SN2009ku is contrary to an emerging trend seen for the SN2002cx class. SN2009ku is a counter-example of a previously held belief that the class was more homogeneous than typical SNeIa, indicating that the class has a diverse progenitor population and/or complicated explosion physics. As the first example of a member of this class of objects from the new generation of transient surveys, SN2009ku is an indication of the potential for these surveys to find rare and interesting objects.Comment: 7 pages, 3 figure

    The Optical-infrared Extinction Curve and Its Variation in the Milky Way

    Get PDF
    The dust extinction curve is a critical component of many observational programs and an important diagnostic of the physics of the interstellar medium. Here we present new measurements of the dust extinction curve and its variation toward tens of thousands of stars, a hundred-fold larger sample than in existing detailed studies. We use data from the APOGEE spectroscopic survey in combination with ten-band photometry from Pan-STARRS1, the Two Micron All-Sky Survey, and Wide-field Infrared Survey Explorer. We find that the extinction curve in the optical through infrared is well characterized by a one-parameter family of curves described by R(V). The extinction curve is more uniform than suggested in past works, with σ(R(V))=0.18\sigma (R(V))=0.18, and with less than one percent of sight lines having R(V)>4R(V)\gt 4. Our data and analysis have revealed two new aspects of Galactic extinction: first, we find significant, wide-area variations in R(V) throughout the Galactic plane. These variations are on scales much larger than individual molecular clouds, indicating that R(V) variations must trace much more than just grain growth in dense molecular environments. Indeed, we find no correlation between R(V) and dust column density up to E(B−V)≈2E(B-V)\approx 2. Second, we discover a strong relationship between R(V) and the far-infrared dust emissivity

    Cosmological Constraints from Measurements of Type Ia Supernovae Discovered during the First 1.5 yr of the Pan-STARRS1 Survey

    Get PDF
    We present griz P1 light curves of 146 spectroscopically confirmed Type Ia supernovae (SNe Ia; 0.03 < z < 0.65) discovered during the first 1.5 yr of the Pan-STARRS1 Medium Deep Survey. The Pan-STARRS1 natural photometric system is determined by a combination of on-site measurements of the instrument response function and observations of spectrophotometric standard stars. We find that the systematic uncertainties in the photometric system are currently 1.2% without accounting for the uncertainty in the Hubble Space Telescope Calspec definition of the AB system. A Hubble diagram is constructed with a subset of 113 out of 146 SNe Ia that pass our light curve quality cuts. The cosmological fit to 310 SNe Ia (113 PS1 SNe Ia + 222 light curves from 197 low-z SNe Ia), using only supernovae (SNe) and assuming a constant dark energy equation of state and flatness, yields w=−1.120−0.206+0.360(Stat)−0.291+0.269(Sys)w=-1.120^{+0.360}_{-0.206}\hbox{(Stat)} ^{+0.269}_{-0.291}\hbox{(Sys)}. When combined with BAO+CMB(Planck)+H 0, the analysis yields ΩM=0.280−0.012+0.013\Omega _{\rm M}=0.280^{+0.013}_{-0.012} and w=−1.166−0.069+0.072w=-1.166^{+0.072}_{-0.069} including all identified systematics. The value of w is inconsistent with the cosmological constant value of –1 at the 2.3σ level. Tension endures after removing either the baryon acoustic oscillation (BAO) or the H 0 constraint, though it is strongest when including the H 0 constraint. If we include WMAP9 cosmic microwave background (CMB) constraints instead of those from Planck, we find w=−1.124−0.065+0.083w=-1.124^{+0.083}_{-0.065}, which diminishes the discord to <2σ. We cannot conclude whether the tension with flat ΛCDM is a feature of dark energy, new physics, or a combination of chance and systematic errors. The full Pan-STARRS1 SN sample with ~three times as many SNe should provide more conclusive results

    ANTARES: the first undersea neutrino telescope

    Get PDF
    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given

    A Search for Fast Optical Transients in the Pan-STARRS1 Medium-Deep Survey: M-Dwarf Flares, Asteroids, Limits on Extragalactic Rates, and Implications for LSST

    Get PDF
    We present a search for fast optical transients (τ ~ 0.5 hr-1 day) using repeated observations of the Pan-STARRS1 Medium-Deep Survey (PS1/MDS) fields. Our search takes advantage of the consecutive g P1 r P1 observations (16.5 minutes in each filter), by requiring detections in both bands, with non-detections on preceding and subsequent nights. We identify 19 transients brighter than 22.5 AB mag (S/N gsim 10). Of these, 11 events exhibit quiescent counterparts in the deep PS1/MDS templates that we identify as M4-M9 dwarfs at d ≈ 0.2-1.2 kpc. The remaining eight transients lack quiescent counterparts, exhibit mild but significant astrometric shifts between the g P1 and r P1 images, colors of (g – r)P1 ≈ 0.5-0.8 mag, non-varying light curves, and locations near the ecliptic plane with solar elongations of about 130°, which are all indicative of main-belt asteroids near the stationary point of their orbits. With identifications for all 19 transients, we place an upper limit of R FOT(τ ~ 0.5 hr) lsim 0.12 deg–2 day–1 (95% confidence level) on the sky-projected rate of extragalactic fast transients at lsim 22.5 mag, a factor of 30-50 times lower than previous limits; the limit for a timescale of ~1 day is R FOT lsim 2.4 × 10–3 deg–2 day–1. To convert these sky-projected rates to volumetric rates, we explore the expected peak luminosities of fast optical transients powered by various mechanisms, and find that non-relativistic events are limited to M ≈ –10 to ≈ – 14 mag for a timescale of ~0.5 hr to ~1 day, while relativistic sources (e.g., gamma-ray bursts, magnetar-powered transients) can reach much larger luminosities. The resulting volumetric rates are lsim 13 Mpc–3 yr–1 (M ≈ –10 mag), lsim 0.05 Mpc–3 yr–1 (M ≈ –14 mag), and lsim 10–6 Mpc–3 yr–1 (M ≈ –24 mag), significantly above the nova, supernova, and gamma-ray burst rates, respectively, indicating that much larger surveys are required to provide meaningful constraints. Motivated by the results of our search, we discuss strategies for identifying fast optical transients in the Large Synoptic Survey Telescope main survey, and reach the optimistic conclusion that the veil of foreground contaminants can be lifted with the survey data, without the need for expensive follow-up observations

    Toward Characterization of the Type IIP Supernova Progenitor Population: A Statistical Sample of Light Curves from Pan-STARRS1

    Get PDF
    In recent years, wide-field sky surveys providing deep multiband imaging have presented a new path for indirectly characterizing the progenitor populations of core-collapse supernovae (SNe): systematic light-curve studies. We assemble a set of 76 grizy-band Type IIP SN light curves from Pan-STARRS1, obtained over a constant survey program of 4 yr and classified using both spectroscopy and machine-learning-based photometric techniques. We develop and apply a new Bayesian model for the full multiband evolution of each light curve in the sample. We find no evidence of a subpopulation of fast-declining explosions (historically referred to as "Type IIL" SNe). However, we identify a highly significant relation between the plateau phase decay rate and peak luminosity among our SNe IIP. These results argue in favor of a single parameter, likely determined by initial stellar mass, predominantly controlling the explosions of red supergiants. This relation could also be applied for SN cosmology, offering a standardizable candle good to an intrinsic scatter of lsim 0.2 mag. We compare each light curve to physical models from hydrodynamic simulations to estimate progenitor initial masses and other properties of the Pan-STARRS1 Type IIP SN sample. We show that correction of systematic discrepancies between modeled and observed SN IIP light-curve properties and an expanded grid of progenitor properties are needed to enable robust progenitor inferences from multiband light-curve samples of this kind. This work will serve as a pathfinder for photometric studies of core-collapse SNe to be conducted through future wide-field transient searches

    Rapidly Evolving and Luminous Transients from Pan-STARRS1

    Get PDF
    In the past decade, several rapidly evolving transients have been discovered whose timescales and luminosities are not easily explained by traditional supernovae (SNe) models. The sample size of these objects has remained small due, at least in part, to the challenges of detecting short timescale transients with traditional survey cadences. Here we present the results from a search within the Pan-STARRS1 Medium Deep Survey (PS1-MDS) for rapidly evolving and luminous transients. We identify 10 new transients with a time above half-maximum (t 1/2) of less than 12 days and –16.5 > M > –20 mag. This increases the number of known events in this region of SN phase space by roughly a factor of three. The median redshift of the PS1-MDS sample is z = 0.275 and they all exploded in star-forming galaxies. In general, the transients possess faster rise than decline timescale and blue colors at maximum light (g P1 – r P1 lsim –0.2). Best-fit blackbodies reveal photospheric temperatures/radii that expand/cool with time and explosion spectra taken near maximum light are dominated by a blue continuum, consistent with a hot, optically thick, ejecta. We find it difficult to reconcile the short timescale, high peak luminosity (L > 1043 erg s–1), and lack of UV line blanketing observed in many of these transients with an explosion powered mainly by the radioactive decay of 56Ni. Rather, we find that many are consistent with either (1) cooling envelope emission from the explosion of a star with a low-mass extended envelope that ejected very little (<0.03 M ☉) radioactive material, or (2) a shock breakout within a dense, optically thick, wind surrounding the progenitor star. After calculating the detection efficiency for objects with rapid timescales in the PS1-MDS we find a volumetric rate of 4800-8000 events yr–1 Gpc–3 (4%-7% of the core-collapse SN rate at z = 0.2)
    corecore