13 research outputs found

    Impact of oil on bacterial community structure in bioturbated sediments

    Get PDF
    Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions - with tidal cycles and natural seawater - was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g21 wet sediment), the common burrowing organism Hediste (Nereis) diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled) showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition) revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by Gammaproteobacteria and Deltaproteobacteria. In the oiled-microcosms, the addition of H. diversicolor reduced the phylotype-richness, sequences associated to Actinobacteria, Firmicutes and Plantomycetes were not detected. These observations highlight the influence of the bioturbation on the bacterial community structure without affecting the biodegradation capacities

    Microbial communities dynamic in response of oil contamination in bioturbated sediments

    No full text
    Dans les environnements cĂŽtiers, soumis Ă  l’impact des marĂ©es noires, les microorganismes jouent un rĂŽle crucial dans le devenir des hydrocarbures pĂ©troliers. Toutefois, de nombreux facteurs influencent les activitĂ©s microbiennes, notamment par les organismes bioturbateurs qui modifient la pĂ©nĂ©tration de l’oxygĂšne dans les sĂ©diments. Le travail de la thĂšse vise Ă  mieux comprendre l’impact d’une pollution pĂ©troliĂšre sur les communautĂ©s microbiennes dans des sĂ©diments bio turbĂ©s. Il s’agissait de comparer les remaniements structuraux de la communautĂ© microbienne liĂ©e Ă  la contamination pĂ©troliĂšre dans des sĂ©diments prĂ©sentant une faible et une forte activitĂ© de bioturbation. Des sĂ©diments marins ont Ă©tĂ© maintenus en microcosmes durant 9 mois et soumis Ă  quatre conditions : (i) pas de traitement (contrĂŽle), (ii) pĂ©trole, (iii) bioturbation et (iv) pĂ©trole et bioturbation. Les efficacitĂ©s de dĂ©gradation des hydrocarbures pĂ©troliers se sont rĂ©vĂ©lĂ©es similaires dans les deux types de sĂ©diments. Par des approches molĂ©culaires, la diversitĂ© taxonomique et fonctionnelle des communautĂ©s microbiennes totales et mĂ©taboliquement actives a Ă©tĂ© Ă©valuĂ©e au cours du temps. Les communautĂ©s microbiennes ont subi d’importants remaniements structuraux spĂ©cifiques Ă  chaque traitement. Nous suggĂ©rons que le fonctionnement global de la communautĂ© est modifiĂ© par l’activitĂ© bioturbatrice sans pour autant modifier l’activitĂ© de dĂ©gradation. Ces travaux ont mis en Ă©vidence une redondance fonctionnelle de l’activitĂ© de biodĂ©gradation des hydrocarbures pĂ©troliers des communautĂ©s microbiennes. L’isolement de communautĂ©s hydrocarbonoclastes a permis de confirmer cette redondance fonctionnelle.Coastal areas such as mudflats are affected by oil spills. In these environments, microorganisms play a crucial role in the fate of petroleum hydrocarbons. However, many factors influence microbial activities, especially the bioturbating organisms, which altered the oxygen penetration in sediments. The present work attempts to better understand the impact of petroleum contamination on microbial community associated with petroleum contamination in sediments with low and high bioturbation activity. This study is based on microcosm experiments with a device simulating tidal cycles. Marine sediments were maintained for 9 months in microcosms and subjected to four conditions: (i) no treatment (control), (ii) oil, (iii) bioturbation and (iv) oil and bioturbation. Chemical, microbiological and biological analyses were conducted throughout the experiment. The efficiencies of degradation of petroleum hydrocarbons were similar in both sediments. By molecular approaches, we assessed the dynamic of the functional and taxonomic diversity of the total and metabolically active communities during the oil contamination. Microbial communities showed significant structural rearrangements specific for each treatment that resulted in distinct microbial communities in both sediments. Hence, the overall microbial community structure was changed by bioturbating activity without changing the degradation capacity revealing a functional redundancy of the biodegradation capacity of hydrocarbons. This result was further supported by the isolation and characterization of hydro carbonoclastic communities

    Dynamique des communautés microbiennes en réponse à une contamination pétroliÚre dans des sédiments bioturbés

    No full text
    Dans les environnements cÎtiers, soumis à l impact des marées noires, les microorganismes jouent un rÎle crucial dans le devenir des hydrocarbures pétroliers. Toutefois, de nombreux facteurs influencent les activités microbiennes, notamment par les organismes bioturbateurs qui modifient la pénétration de l oxygÚne dans les sédiments. Le travail de la thÚse vise à mieux comprendre l impact d une pollution pétroliÚre sur les communautés microbiennes dans des sédiments bio turbés. Il s agissait de comparer les remaniements structuraux de la communauté microbienne liée à la contamination pétroliÚre dans des sédiments présentant une faible et une forte activité de bioturbation. Des sédiments marins ont été maintenus en microcosmes durant 9 mois et soumis à quatre conditions : (i) pas de traitement (contrÎle), (ii) pétrole, (iii) bioturbation et (iv) pétrole et bioturbation. Les efficacités de dégradation des hydrocarbures pétroliers se sont révélées similaires dans les deux types de sédiments. Par des approches moléculaires, la diversité taxonomique et fonctionnelle des communautés microbiennes totales et métaboliquement actives a été évaluée au cours du temps. Les communautés microbiennes ont subi d importants remaniements structuraux spécifiques à chaque traitement. Nous suggérons que le fonctionnement global de la communauté est modifié par l activité bioturbatrice sans pour autant modifier l activité de dégradation. Ces travaux ont mis en évidence une redondance fonctionnelle de l activité de biodégradation des hydrocarbures pétroliers des communautés microbiennes. L isolement de communautés hydrocarbonoclastes a permis de confirmer cette redondance fonctionnelle.Coastal areas such as mudflats are affected by oil spills. In these environments, microorganisms play a crucial role in the fate of petroleum hydrocarbons. However, many factors influence microbial activities, especially the bioturbating organisms, which altered the oxygen penetration in sediments. The present work attempts to better understand the impact of petroleum contamination on microbial community associated with petroleum contamination in sediments with low and high bioturbation activity. This study is based on microcosm experiments with a device simulating tidal cycles. Marine sediments were maintained for 9 months in microcosms and subjected to four conditions: (i) no treatment (control), (ii) oil, (iii) bioturbation and (iv) oil and bioturbation. Chemical, microbiological and biological analyses were conducted throughout the experiment. The efficiencies of degradation of petroleum hydrocarbons were similar in both sediments. By molecular approaches, we assessed the dynamic of the functional and taxonomic diversity of the total and metabolically active communities during the oil contamination. Microbial communities showed significant structural rearrangements specific for each treatment that resulted in distinct microbial communities in both sediments. Hence, the overall microbial community structure was changed by bioturbating activity without changing the degradation capacity revealing a functional redundancy of the biodegradation capacity of hydrocarbons. This result was further supported by the isolation and characterization of hydro carbonoclastic communities.PAU-BU Sciences (644452103) / SudocSudocFranceF

    Enhanced structural and functional genome elucidation of the arsenite-oxidizing strain Herminiimonas arsenicoxydans by proteomics data.

    No full text
    International audienceThe arsenite-oxidizing strain Herminiimonas arsenicoxydans proteome was investigated with gel electrophoresis and tandem mass spectrometry analyses. The comparison of experimental and theoretical M(r) and pI, as well as that of peptide sequences identified by MS and predicted protein sequences, allowed the correction of five protein annotations. More importantly, the functional analysis of SDS- and 2D-PAGE proteome maps obtained in the presence of arsenic, combined with partial transcriptomic results indicate that H. arsenicoxydans expressed genes and proteins required not only for arsenic detoxification or stress response but also involved in motility, exopolysaccharide synthesis, phosphate import or energetic metabolism. This study provides therefore new insights into the adaptation processes of H. arsenicoxydans in response to arsenic

    Relationship between microcosm conditions and bacterial phylotypes (phylum level).

    No full text
    <p>(A) Heatmap with double clustering. The microcosm conditions are clustered at the top and bacterial phylotypes are clustered on the left of the heatmap according to their intensity profile similarity. Black corresponds to a higher abundance and white to an absence of taxa. (B) Relative abundance (%) of phylogenetic groups in 16S rRNA libraries from the four incubation conditions at 270 days.</p

    Comparison of 16S rRNA genes and 16S rRNA transcripts based on T-RFLP analyses from BAL and NEREIS+BAL.

    No full text
    <p>(<b>A</b>) Percentage of Operational Taxonomic Units (OTUs) specific to the 16S rRNA genes (RNA− DNA+) or the 16S rRNA transcripts (RNA+ DNA−), or common to both (RNA+ DNA+). The stars show significant differences obtained by the Duncan test (p-value<0.05) compared to the day 2 value. (B) Relationships between percentage of OTUs common to 16S rRNA genes and transcripts (RNA+ DNA+) with n-alkanes concentrations.</p
    corecore