2,514 research outputs found

    A high-pressure hydrogen time projection chamber for the MuCap experiment

    Full text link
    The MuCap experiment at the Paul Scherrer Institute performed a high-precision measurement of the rate of the basic electroweak process of nuclear muon capture by the proton, μ+pn+νμ\mu^- + p \rightarrow n + \nu_\mu. The experimental approach was based on the use of a time projection chamber (TPC) that operated in pure hydrogen gas at a pressure of 10 bar and functioned as an active muon stopping target. The TPC detected the tracks of individual muon arrivals in three dimensions, while the trajectories of outgoing decay (Michel) electrons were measured by two surrounding wire chambers and a plastic scintillation hodoscope. The muon and electron detectors together enabled a precise measurement of the μp\mu p atom's lifetime, from which the nuclear muon capture rate was deduced. The TPC was also used to monitor the purity of the hydrogen gas by detecting the nuclear recoils that follow muon capture by elemental impurities. This paper describes the TPC design and performance in detail.Comment: 15 pages, 13 figures, to be submitted to Eur. Phys. J. A; clarified section 3.1.2 and made minor stylistic corrections for Eur. Phys. J. A requirement

    Measurement of Muon Capture on the Proton to 1% Precision and Determination of the Pseudoscalar Coupling g_P

    Full text link
    The MuCap experiment at the Paul Scherrer Institute has measured the rate L_S of muon capture from the singlet state of the muonic hydrogen atom to a precision of 1%. A muon beam was stopped in a time projection chamber filled with 10-bar, ultra-pure hydrogen gas. Cylindrical wire chambers and a segmented scintillator barrel detected electrons from muon decay. L_S is determined from the difference between the mu- disappearance rate in hydrogen and the free muon decay rate. The result is based on the analysis of 1.2 10^10 mu- decays, from which we extract the capture rate L_S = (714.9 +- 5.4(stat) +- 5.1(syst)) s^-1 and derive the proton's pseudoscalar coupling g_P(q^2_0 = -0.88 m^2_mu) = 8.06 +- 0.55.Comment: Updated figure 1 and small changes in wording to match published versio

    Measurement of the Rate of Muon Capture in Hydrogen Gas and Determination of the Proton's Pseudoscalar Coupling gPg_P

    Full text link
    The rate of nuclear muon capture by the proton has been measured using a new experimental technique based on a time projection chamber operating in ultra-clean, deuterium-depleted hydrogen gas at 1 MPa pressure. The capture rate was obtained from the difference between the measured μ\mu^- disappearance rate in hydrogen and the world average for the μ+\mu^+ decay rate. The target's low gas density of 1% compared to liquid hydrogen is key to avoiding uncertainties that arise from the formation of muonic molecules. The capture rate from the hyperfine singlet ground state of the μp\mu p atom is measured to be ΛS=725.0±17.4s1\Lambda_S=725.0 \pm 17.4 s^{-1}, from which the induced pseudoscalar coupling of the nucleon, gP(q2=0.88mμ2)=7.3±1.1g_P(q^2=-0.88 m_\mu^2)=7.3 \pm 1.1, is extracted. This result is consistent with theoretical predictions for gPg_P that are based on the approximate chiral symmetry of QCD.Comment: submitted to Phys.Rev.Let

    A Precision Measurement of Nuclear Muon Capture on 3He

    Get PDF
    The muon capture rate in the reaction mu- 3He -> nu + 3H has been measured at PSI using a modular high pressure ionization chamber. The rate corresponding to statistical hyperfine population of the mu-3He atom is (1496.0 +- 4.0) s^-1. This result confirms the PCAC prediction for the pseudoscalar form factors of the 3He-3H system and the nucleon.Comment: 13 pages, 6 PostScript figure

    Induced pseudoscalar coupling of the proton weak interaction

    Full text link
    The induced pseudoscalar coupling gpg_p is the least well known of the weak coupling constants of the proton's charged--current interaction. Its size is dictated by chiral symmetry arguments, and its measurement represents an important test of quantum chromodynamics at low energies. During the past decade a large body of new data relevant to the coupling gpg_p has been accumulated. This data includes measurements of radiative and non radiative muon capture on targets ranging from hydrogen and few--nucleon systems to complex nuclei. Herein the authors review the theoretical underpinnings of gpg_p, the experimental studies of gpg_p, and the procedures and uncertainties in extracting the coupling from data. Current puzzles are highlighted and future opportunities are discussed.Comment: 58 pages, Latex, Revtex4, prepared for Reviews of Modern Physic

    Measurements of the branching fractions of B+→ppK+ decays

    Get PDF
    The branching fractions of the decay B+ → pp̄K+ for different intermediate states are measured using data, corresponding to an integrated luminosity of 1.0 fb-1, collected by the LHCb experiment. The total branching fraction, its charmless component Mpp̄ < 2.85 GeV/c2 and the branching fractions via the resonant cc̄ states η c(1S) and ψ(2S) relative to the decay via a J/ψ intermediate state are [Equation not available: see fulltext.] Upper limits on the B + branching fractions into the η c(2S) meson and into the charmonium-like states X(3872) and X(3915) are also obtained

    Measurement of the mass and lifetime of the Ωb\Omega_b^- baryon

    Get PDF
    A proton-proton collision data sample, corresponding to an integrated luminosity of 3 fb1^{-1} collected by LHCb at s=7\sqrt{s}=7 and 8 TeV, is used to reconstruct 63±963\pm9 ΩbΩc0π\Omega_b^-\to\Omega_c^0\pi^-, Ωc0pKKπ+\Omega_c^0\to pK^-K^-\pi^+ decays. Using the ΞbΞc0π\Xi_b^-\to\Xi_c^0\pi^-, Ξc0pKKπ+\Xi_c^0\to pK^-K^-\pi^+ decay mode for calibration, the lifetime ratio and absolute lifetime of the Ωb\Omega_b^- baryon are measured to be \begin{align*} \frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\ \tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the uncertainties are statistical, systematic and from the calibration mode (for τΩb\tau_{\Omega_b^-} only). A measurement is also made of the mass difference, mΩbmΞbm_{\Omega_b^-}-m_{\Xi_b^-}, and the corresponding Ωb\Omega_b^- mass, which yields \begin{align*} m_{\Omega_b^-}-m_{\Xi_b^-} &= 247.4\pm3.2\pm0.5~{\rm MeV}/c^2, \\ m_{\Omega_b^-} &= 6045.1\pm3.2\pm 0.5\pm0.6~{\rm MeV}/c^2. \end{align*} These results are consistent with previous measurements.Comment: 11 pages, 5 figures, All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-008.htm
    corecore