497 research outputs found

    Effect of Co-Inoculation with Mycorrhiza and Rhizobia on the Nodule Trehalose Content of Different Bean Genotypes

    Get PDF
    Studies on Rhizobium-legume symbiosis show that trehalose content in nodules under drought stress correlates positively with an increase in plant tolerance to this stress. Fewer reports describe trehalose accumulation in mycorrhiza where, in contrast with rhizobia, there is no flux of carbohydrates from the microsymbiont to the plant. However, the trehalose dynamics in the Mycorrhiza-Rhizobium-Legume tripartite symbiosis is unknown. The present study explores the role of this tripartite symbiosis in the trehalose content of nodules grown under contrasting moisture conditions. Three wild genotypes (P. filiformis, P. acutifolis and P. vulgaris) and two commercial genotypes of Phaseolus vulgaris (Pinto villa and Flor de Mayo) were used. Co-inoculation treatments were conducted with Glomus intraradices and a mixture of seven native rhizobial strains, and trehalose content was determined by GC/MS. The results showed a negative effect of mycorrhizal inoculation on nodule development, as mycorrhized plants showed fewer nodules and lower nodule dry weight compared to plants inoculated only with Rhizobium. Mycorrhizal colonization was also higher in plants inoculated only with Glomus as compared to plants co-inoculated with both microsymbionts. In regard to trehalose, co-inoculation negatively affects its accumulation in the nodules of each genotype tested. However, the correlation analysis showed a significantly positive correlation between mycorrhizal colonization and nodule trehalose content

    Optimización de la gestión y mantenimiento de elementos urbanos mediante geoposicionamiento y vinculación de base de datos interactiva al modelo de información de construcción

    Get PDF
    El artículo resumino en este póster, denominado “Optimization of the management and maintenance of urban elements through geolocation and linking of interactive database to the construction information model”, fue seleccionado y superó el proceso de revisión de INGEGRAF2019 para ser incluido en la publicación “Advances in Design Engineering” Lecture Notes in Mechanical Engineering de la editorial Springer International Publishing AG, con número de orden: 87021766, GPU/PD/PS: 3/32/457, Legal Entity Number: 1128, IU: 477172, Edition ID: 426426 y Código de la editorial 457_87021766_AUE_Cavas-Martínez_Advances in Design Engineering.BIMoPOLIS surge como una idea, basada en el desarro-llo de contenidos digitales, en el campo de la arquitectura y las infraestructuras, haciendo uso de las últimas tecnologías en los campos del levantamiento, modelado en tres dimensiones (3D), geoposicionamiento y realidad virtual y aumentada (RV) (RA), cuyo proyecto obtuvo un premio Spin-Off. El objetivo de estos contenidos digitales es su inclusión en aplicaciones que transformen la manera en la que tradicionalmente se opera en estas áreas a nivel de gestión y mantenimiento, optimizando los protocolos, en busca del concepto de Smart City. Para ello, se suele proceder levantando y geoposicionando la infraestructura en cuestión e incorporando al modelo 3D la información relevante para la realización de operaciones habituales de mantenimiento como medidas, materiales, datos de contacto de distribuidores, precios, vistas de detalle u otros indicadores de interés. La vinculación de esos datos al modelo virtual conlleva numerosas ventajas ya que, mediante el uso de una única aplicación, se pueden realizar informes de incidencias, posicionar averías, contactar con operarios y proveedores, reportar de trabajos acabados, etc., suponiendo un gran ahorro en tiempos y costes de ges-tión y comunicación en operaciones de mantenimiento. Este artículo se centra en el primer proyecto desarrollado por BIMoPOLIS, por encargado del Vicerrectorado de Smart-Campus de la Universidad de Málaga (UMA), consistente en el geoposicionamiento arbóreo y vinculación de base de datos interactiva al modelado de información de construcción de la sección principal del bulevar Louis Pasteur, ubicado en su Campus de Teatinos.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Laser treatment of Ag@ZnO nanorods as long-life-span SERS surfaces.

    Get PDF
    This is the accepted manuscript. The final version is available from ACS at http://pubs.acs.org/doi/abs/10.1021/am506622x.UV nanosecond laser pulses have been used to produce a unique surface nanostructuration of Ag@ZnO supported nanorods (NRs). The NRs were fabricated by plasma enhanced chemical vapor deposition (PECVD) at low temperature applying a silver layer as promoter. The irradiation of these structures with single nanosecond pulses of an ArF laser produces the melting and reshaping of the end of the NRs that aggregate in the form of bundles terminated by melted ZnO spherical particles. Well-defined silver nanoparticles (NPs), formed by phase separation at the surface of these melted ZnO particles, give rise to a broad plasmonic response consistent with their anisotropic shape. Surface enhanced Raman scattering (SERS) in the as-prepared Ag@ZnO NRs arrays was proved by using a Rhodamine 6G (Rh6G) chromophore as standard analyte. The surface modifications induced by laser treatment improve the stability of this system as SERS substrate while preserving its activity.We thank the Junta de Andalucía (TEP8067, FQM-6900 and P12-FQM-2265) and the Spanish Ministry of Economy and Competitiveness (Projects CONSOLIDER-CSD 2008-00023, MAT2011-28345-C02-02, MAT2013-40852-R, MAT2013-42900-P and RECUPERA 2020) for financial support. The authors also thank the European Union Seventh Framework Programme under Grant Agreements 312483-ESTEEM2 (Integrated Infrastructure Initiative-I3) and REGPOT-CT-2011-285895-Al-NANOFUNC, and the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC grant agreement 291522 - 3DIMAGE. R. J. Peláez acknowledges the grant JCI-2012_13034 from the Juan de la Cierva program

    Allelochemical stress inhibits growth, leaf water relations, PSII photochemistry, non-photochemical fluorescence quenching, and heat energy dissipation in three C3 perennial species

    Get PDF
    In this study, the effect of two allelochemicals, benzoxazolin-2(3H)-one (BOA) and cinnamic acid (CA), on different physiological and morphological characteristics of 1-month-old C3 plant species (Dactylis glomerata, Lolium perenne, and Rumex acetosa) was analysed. BOA inhibited the shoot length of D. glomerata, L. perenne, and R. acetosa by 49%, 19%, and 19% of the control. The root length of D. glomerata, L. perenne, and R. acetosa growing in the presence of 1.5 mM BOA and CA was decreased compared with the control. Both allelochemicals (BOA, CA) inhibited leaf osmotic potential (LOP) in L. perenne and D. glomerata. In L. perenne, Fv/Fm decreased after treatment with BOA (1.5 mM) while CA (1.5 mM) also significantly reduced Fv/Fm in L. perenne. Both allelochemicals decreased ΦPSII in D. glomerata and L. perenne within 24 h of treatment, while in R. acetosa, ΦPSII levels decreased by 72 h following treatment with BOA and CA. There was a decrease in qP and NPQ on the first, fourth, fifth, and sixth days after treatment with BOA in D. glomerata, while both allelochemicals reduced the qP level in R. acetosa. There was a gradual decrease in the fraction of light absorbed by PSII allocated to PSII photochemistry (P) in R. acetosa treated with BOA and CA. The P values in D. glomerata were reduced by both allelochemicals and the portion of absorbed photon energy that was thermally dissipated (D) in D. glomerata and L. perenne was decreased by BOA and CA. Photon energy absorbed by PSII antennae and trapped by ‘closed’ PSII reaction centres (E) was decreased after CA exposure in D. glomerata. BOA and CA (1.5 mM concentration) decreased the leaf protein contents in all three perennial species. This study provides new understanding of the physiological and biochemical mechanisms of action of BOA and CA in one perennial dicotyledon and two perennial grasses. The acquisition of such knowledge may ultimately provide a rational and scientific basis for the design of safe and effective herbicides

    Patients with Cholangiocarcinoma Present Specific RNA Profiles in Serum and Urine Extracellular Vesicles Mirroring the Tumor Expression: Novel Liquid Biopsy Biomarkers for Disease Diagnosis

    Get PDF
    Cholangiocarcinoma (CCA) comprises a group of heterogeneous biliary cancers with dismal prognosis. The etiologies of most CCAs are unknown, but primary sclerosing cholangitis (PSC) is a risk factor. Non-invasive diagnosis of CCA is challenging and accurate biomarkers are lacking. We aimed to characterize the transcriptomic profile of serum and urine extracellular vesicles (EVs) from patients with CCA, PSC, ulcerative colitis (UC), and healthy individuals. Serum and urine EVs were isolated by serial ultracentrifugations and characterized by nanoparticle tracking analysis, transmission electron microscopy, and immunoblotting. EVs transcriptome was determined by Illumina gene expression array [messenger RNAs (mRNA) and non-coding RNAs (ncRNAs)]. Differential RNA profiles were found in serum and urine EVs from patients with CCA compared to control groups (disease and healthy), showing high diagnostic capacity. The comparison of the mRNA profiles of serum or urine EVs from patients with CCA with the transcriptome of tumor tissues from two cohorts of patients, CCA cells in vitro, and CCA cellsderived EVs, identified 105 and 39 commonly-altered transcripts, respectively. Gene ontology analysis indicated that most commonly-altered mRNAs participate in carcinogenic steps. Overall, patients with CCA present specific RNA profiles in EVs mirroring the tumor, and constituting novel promising liquid biopsy biomarkers

    Causes of hOCT1-dependent cholangiocarcinoma resistance to sorafenib and sensitization by tumor-selective gene therapy

    Get PDF
    Although the multi-tyrosine kinase inhibitor sorafenib is useful in the treatment of several cancers, cholangiocarcinoma (CCA) is refractory to this drug. Among other mechanisms of chemoresistance, impaired uptake through human organic cation transporter type 1 (hOCT1) (gene SLC22A1) has been suggested. Here we have investigated the events accounting for this phenotypic characteristic and have evaluated the interest of selective gene therapy strategies to overcome this limitation. Gene expression and DNA methylation of SLC22A1 were analyzed using intrahepatic (iCCA) and extrahepatic (eCCA) biopsies (Copenhagen and Salamanca cohorts; n = 132) and The Cancer Genome Atlas (TCGA)-CHOL (n = 36). Decreased hOCT1 mRNA correlated with hypermethylation status of the SLC22A1 promoter. Treatment of CCA cells with decitabine (demethylating agent) or butyrate (histone deacetylase inhibitor) restored hOCT1 expression and increased sorafenib uptake. MicroRNAs able to induce hOCT1 mRNA decay were analyzed in paired samples of TCGA-CHOL (n = 9) and Copenhagen (n = 57) cohorts. Consistent up-regulation in tumor tissue was found for miR-141 and miR-330. High proportion of aberrant hOCT1 mRNA splicing in CCA was also seen. Lentiviral-mediated transduction of eCCA (EGI-1 and TFK-1) and iCCA (HuCCT1) cells with hOCT1 enhanced sorafenib uptake and cytotoxic effects. In chemically induced CCA in rats, reduced rOct1 expression was accompanied by impaired sorafenib uptake. In xenograft models of eCCA cells implanted in mouse liver, poor response to sorafenib was observed. However, tumor growth was markedly reduced by cotreatment with sorafenib and adenoviral vectors encoding hOCT1 under the control of the BIRC5 promoter, a gene highly up-regulated in CCA. Conclusion: The reason for impaired hOCT1-mediated sorafenib uptake by CCA is multifactorial. Gene therapy capable of selectively inducing hOCT1 in tumor cells can be considered a potentially useful chemosensitization strategy to improve the response of CCA to sorafenib

    Can serum hyaluronic acid replace simple non-invasive indexes to predict liver fibrosis in HIV/Hepatitis C coinfected patients?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyaluronic acid (HA) serum levels correlate with the histological stages of liver fibrosis in hepatitis C virus (HCV) monoinfected patients, and HA alone has shown very good diagnostic accuracy as a non-invasive assessment of fibrosis and cirrhosis. The aim of this study was to evaluate serum HA levels as a simple non-invasive diagnostic test to predict hepatic fibrosis in HIV/HCV-coinfected patients and to compare its diagnostic performance with other previously published simple non-invasive indexes consisting of routine parameters (HGM-1, HGM-2, Forns, APRI, and FIB-4).</p> <p>Methods</p> <p>We carried out a cross-sectional study on 201 patients who all underwent liver biopsies and had not previously received interferon therapy. Liver fibrosis was determined via METAVIR score. The diagnostic accuracy of HA was assessed by area under the receiver operating characteristic curves (AUROCs).</p> <p>Results</p> <p>The distribution of liver fibrosis in our cohort was 58.2% with significant fibrosis (F≥2), 31.8% with advanced fibrosis (F≥3), and 11.4% with cirrhosis (F4). Values for the AUROC of HA levels corresponding to significant fibrosis (F≥2), advanced fibrosis (F≥3) and cirrhosis (F4) were 0.676, 0.772, and 0.863, respectively. The AUROC values for HA were similar to those for HGM-1, HGM-2, FIB-4, APRI, and Forns indexes. The best diagnostic accuracy of HA was found for the diagnosis of cirrhosis (F4): the value of HA at the low cut-off (1182 ng/mL) excluded cirrhosis (F4) with a negative predictive value of 99% and at the high cut-off (2400 ng/mL) confirmed cirrhosis (F4) with a positive predictive value of 55%. By utilizing these low and high cut-off points for cirrhosis, biopsies could have theoretically been avoided in 52.2% (111/201) of the patients.</p> <p>Conclusions</p> <p>The diagnostic accuracy of serum HA levels increases gradually with the hepatic fibrosis stage. However, HA is better than other simple non-invasive indexes using parameters easily available in routine clinical practice only for the diagnosing of cirrhosis.</p

    Genome-wide association analysis of dementia and its clinical endophenotypes reveal novel loci associated with Alzheimer's disease and three causality networks: The GR@ACE project

    Get PDF
    Introduction: Large variability among Alzheimer's disease (AD) cases might impact genetic discoveries and complicate dissection of underlying biological pathways. Methods: Genome Research at Fundacio ACE (GR@ACE) is a genome-wide study of dementia and its clinical endophenotypes, defined based on AD's clinical certainty and vascular burden. We assessed the impact of known AD loci across endophenotypes to generate loci categories. We incorporated gene coexpression data and conducted pathway analysis per category. Finally, to evaluate the effect of heterogeneity in genetic studies, GR@ACE series were meta-analyzed with additional genome-wide association study data sets. Results: We classified known AD loci into three categories, which might reflect the disease clinical heterogeneity. Vascular processes were only detected as a causal mechanism in probable AD. The meta-analysis strategy revealed the ANKRD31-rs4704171 and NDUFAF6-rs10098778 and confirmed SCIMP-rs7225151 and CD33-rs3865444. Discussion: The regulation of vasculature is a prominent causal component of probable AD. GR@ACE meta-analysis revealed novel AD genetic signals, strongly driven by the presence of clinical heterogeneity in the AD series

    Customized Treatment in Non-Small-Cell Lung Cancer Based on EGFR Mutations and BRCA1 mRNA Expression

    Get PDF
    BACKGROUND: Median survival is 10 months and 2-year survival is 20% in metastatic non-small-cell lung cancer (NSCLC) treated with platinum-based chemotherapy. A small fraction of non-squamous cell lung cancers harbor EGFR mutations, with improved outcome to gefitinib and erlotinib. Experimental evidence suggests that BRCA1 overexpression enhances sensitivity to docetaxel and resistance to cisplatin. RAP80 and Abraxas are interacting proteins that form complexes with BRCA1 and could modulate the effect of BRCA1. In order to further examine the effect of EGFR mutations and BRCA1 mRNA levels on outcome in advanced NSCLC, we performed a prospective non-randomized phase II clinical trial, testing the hypothesis that customized therapy would confer improved outcome over non-customized therapy. In an exploratory analysis, we also examined the effect of RAP80 and Abraxas mRNA levels. METHODOLOGY/PRINCIPAL FINDINGS: We treated 123 metastatic non-squamous cell lung carcinoma patients using a customized approach. RNA and DNA were isolated from microdissected specimens from paraffin-embedded tumor tissue. Patients with EGFR mutations received erlotinib, and those without EGFR mutations received chemotherapy with or without cisplatin based on their BRCA1 mRNA levels: low, cisplatin plus gemcitabine; intermediate, cisplatin plus docetaxel; high, docetaxel alone. An exploratory analysis examined RAP80 and Abraxas expression. Median survival exceeded 28 months for 12 patients with EGFR mutations, and was 11 months for 38 patients with low BRCA1, 9 months for 40 patients with intermediate BRCA1, and 11 months for 33 patients with high BRCA1. Two-year survival was 73.3%, 41.2%, 15.6% and 0%, respectively. Median survival was influenced by RAP80 expression in the three BRCA1 groups. For example, for patients with both low BRCA1 and low RAP80, median survival exceeded 26 months. RAP80 was a significant factor for survival in patients treated according to BRCA1 levels (hazard ratio, 1.3 [95% CI, 1-1.7]; P = 0.05). CONCLUSIONS/SIGNIFICANCE: Chemotherapy customized according to BRCA1 expression levels is associated with excellent median and 2-year survival for some subsets of NSCLC patients , and RAP80 could play a crucial modulating effect on this model of customized chemotherapy. TRIAL REGISTRATION: (ClinicalTrials.gov) NCT00883480
    corecore