51 research outputs found
Micro-mechanical analysis of composite materials using Phase-Field models of brittle fracture
Failure in fiber-reinforced composites is a complex phenomenon where different damage mechanisms interact and evolve through various scales. Micro-mechanical analysis using the finite element method has become an important alternative to study such failure phenomena and their interactions, by modeling explicitly the fiber, matrix, and fiber–matrix interface. In this work, the predictive capabilities of the finite element method together with the Phase-Field (PF) method for fracture has been assessed. The study compares different PF formulations, energy splits and numerical parameters, using Representative Volume Elements (RVEs) of different sizes, fiber distributions and with different Boundary Conditions (BCs). It is found that even though good approximations can be obtained and meso-scale failure envelopes for transverse loading generated, these are highly dependent on the modeling assumptions and PF parameters. The AT2 formulation combined with Amor’s energy split provides the best predictions when compared with an analytical failure surface. The best fit is found for transverse shear-dominated loading, while larger differences are found for compressive loading, whose strength predictions are strongly affected by the PF formulations and energy splits. It is demonstrated that meso-scale strength is conditioned by interface properties as interface damage is the dominant failure initiation mechanism under tensile-dominated loading. On the other hand, PF parameters have a stronger influence on compressive-dominated loading. Finally, it is shown that assuming a perfect fiber–matrix interface has a strong effect on the expected meso-scale strength, as failure is markedly delayed. Accordingly, based on the present results, especial care should be taken in properly assessing all the variables involved in the modeling methodology to draw conclusions from computational micro-mechanical analyses based on the PF approach.Postprint (published version
Extracellular Kir2.1C122Y Mutant Upsets Kir2.1-PIP2 Bonds and Is Arrhythmogenic in Andersen-Tawil Syndrome.
BACKGROUND
Andersen-Tawil syndrome type 1 is a rare heritable disease caused by mutations in the gene coding the strong inwardly rectifying K+ channel Kir2.1. The extracellular Cys (cysteine)122-to-Cys154 disulfide bond in the channel structure is crucial for proper folding but has not been associated with correct channel function at the membrane. We evaluated whether a human mutation at the Cys122-to-Cys154 disulfide bridge leads to Kir2.1 channel dysfunction and arrhythmias by reorganizing the overall Kir2.1 channel structure and destabilizing its open state.
METHODS
We identified a Kir2.1 loss-of-function mutation (c.366 A>T; p.Cys122Tyr) in an ATS1 family. To investigate its pathophysiological implications, we generated an AAV9-mediated cardiac-specific mouse model expressing the Kir2.1C122Y variant. We employed a multidisciplinary approach, integrating patch clamping and intracardiac stimulation, molecular biology techniques, molecular dynamics, and bioluminescence resonance energy transfer experiments.
RESULTS
Kir2.1C122Y mice recapitulated the ECG features of ATS1 independently of sex, including corrected QT prolongation, conduction defects, and increased arrhythmia susceptibility. Isolated Kir2.1C122Y cardiomyocytes showed significantly reduced inwardly rectifier K+ (IK1) and inward Na+ (INa) current densities independently of normal trafficking. Molecular dynamics predicted that the C122Y mutation provoked a conformational change over the 2000-ns simulation, characterized by a greater loss of hydrogen bonds between Kir2.1 and phosphatidylinositol 4,5-bisphosphate than wild type (WT). Therefore, the phosphatidylinositol 4,5-bisphosphate-binding pocket was destabilized, resulting in a lower conductance state compared with WT. Accordingly, on inside-out patch clamping, the C122Y mutation significantly blunted Kir2.1 sensitivity to increasing phosphatidylinositol 4,5-bisphosphate concentrations. In addition, the Kir2.1C122Y mutation resulted in channelosome degradation, demonstrating temporal instability of both Kir2.1 and NaV1.5 proteins.
CONCLUSIONS
The extracellular Cys122-to-Cys154 disulfide bond in the tridimensional Kir2.1 channel structure is essential for the channel function. We demonstrate that breaking disulfide bonds in the extracellular domain disrupts phosphatidylinositol 4,5-bisphosphate-dependent regulation, leading to channel dysfunction and defects in Kir2.1 energetic stability. The mutation also alters functional expression of the NaV1.5 channel and ultimately leads to conduction disturbances and life-threatening arrhythmia characteristic of Andersen-Tawil syndrome type 1.The authors thank the Centro Nacional de Investigaciones Cardiovasculares (CNIC)
Viral Vectors Unit for producing the adeno-associated virus serotype 9. Confocal experiments were conducted at the CNIC Microscopy and Dynamic Imaging Unit. The
authors thank the CNIC Bioinformatics Unit for generating the in silico homology
modeling simulations, F-function analysis, and helpful discussions. The authors also
thank the Centro de Supercomputación de Galicia for the use of the Finis Terrae III
supercomputer to perform molecular dynamics studies. The CNIC was supported
by the Instituto de Salud Carlos III, the Ministerio de Ciencia, Innovación y Universidades, and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence
(grant CEX2020-001041-S funded by MICIU/AEI/10.13039/501100011033).
This work was supported by the National heart, Lung and Blood Institute under
National Institutes of Health (NIH) grant R01HL163943; the La Caixa Banking
Foundation project code HR18-00304 (grant LCF/PR/HR19/52160013); grants
PI-FIS-2020, PI20/01220, PI-FIS-2023, and PI23/01039 from the Instituto de Salud Carlos III and cofunded by the Fondo Europeo de Desarrollo Regional
(FEDER) and the European Union, respectively; grants PID2020-116935RB-I00
and BFU2016-75144-R funded by MICIU/AEI/10.13039/501100011033; the
Fundación La Marató de TV3 (736/C/2020) amb el suport de la Fundació La Marató
de TV3; the CIBER (Centro de Investigación Biomédica en Red) de Enfermedades
Cardiovasculares (grant CB16/11/00458); the European Union’s Horizon 2020
grant agreement GA-965286; and the Program S2022/BMD7229-CM ARCADIACM funded by the Comunidad de Madrid to J. Jalife; grant PID2021-126423OB-C22
(to M. Martín-Martínez) funded by MICIU/AEI/10.13039/501100011033; and European Regional Development Fund (ERDF) grant PID2022-137214OB-C22 (to
M. Gutierrez-Rodríguez) funded by MICIU/AEI/10.13039/501100011033. The
imaging studies were performed in the TRIMA@CNIC (Infraestructura de Imagen
Traslacional Avanzada del CNIC) node of the ICTS ReDIB (Infraestructuras Científicas y Técnicas Singulares: Red Distribuida de Imagen Biomédica) grant ICTS-2018-
04-CNIC-16 funded by MICIU/AEI/10.13039/501100011033 and ERDF, and
project EQC2018-005070-P funded by MICIU/AEI/10.13039/501100011033
and FEDER. A.I. Moreno-Manuel holds an formación profesional universitaria (FPU)
contract (FPU20/01569) from the Ministerio de Universidades. J.M. Ruiz Robles
holds an FPU contract (FPU22/03253) from the Ministerio de Universidades.
L.K. Gutiérrez holds an FPI contract (PRE2018-083530) from the Ministerio de
Economía y Competitividad de España cofunded by the Fondo Social Europeo, attached to project SEV-2015-0505-18-2. I. Martínez-Carrascoso holds a PFIS (Contratos predoctorales de formación en investigación en salud) contract (FI21/00243)
funded by Instituto de Salud Carlos III and the Fondo Social Europeo Plus cofunded
by the European Union. M.L. Vera-Pedrosa held contract PEJD-2019-PRE/BMD15982 funded by the Consejería de Educación e Investigación de la Comunidad de
Madrid y Fondo Social Europeo.S
Genomic Characterization of Host Factors Related to SARS-CoV-2 Infection in People with Dementia and Control Populations: The GR@ACE/DEGESCO Study
Emerging studies have suggested several chromosomal regions as potential host genetic factors involved in the susceptibility to SARS-CoV-2 infection and disease outcome. We nested a COVID-19 genome-wide association study using the GR@ACE/DEGESCO study, searching for susceptibility factors associated with COVID-19 disease. To this end, we compared 221 COVID-19 confirmed cases with 17,035 individuals in whom the COVID-19 disease status was unknown. Then, we performed a meta-analysis with the publicly available data from the COVID-19 Host Genetics Initiative. Because the APOE locus has been suggested as a potential modifier of COVID-19 disease, we added sensitivity analyses stratifying by dementia status or by disease severity. We confirmed the existence of the 3p21.31 region (LZTFL1, SLC6A20) implicated in the susceptibility to SARS-CoV-2 infection and TYK2 gene might be involved in COVID-19 severity. Nevertheless, no statistically significant association was observed in the COVID-19 fatal outcome or in the stratified analyses (dementia-only and non-dementia strata) for the APOE locus not supporting its involvement in SARS-CoV-2 pathobiology or COVID-19 prognosis
La ganadería ante escenarios complejos.
La calidad de las contribuciones, producto de la pluma de especialistas en los temas tratados, el presente es un libro que
esperamos, basándonos en la importancia de los temas tratados, sea de utilidad y abone a la reflexión de los estudiosos de la ganadería mexicana y, por supuesto, en beneficio de las familias ganaderas y de los consumidores
de sus productos.este libro refleja en muchos sentidos la situación de la ganadería mexicana, a la que se le están demandando mayor producción y productividad, que los procesos productivos tengan la menor huella ecológicposible, que los alimentos sean inocuos, que se abatan costos de producción y, cada vez aumentan las presiones de diversos grupos para, que se incluyan los protocolos de bienestar animal, solamente por citar
algunos de los retos que tiene. Algunas de estas demandas son complementarias, otras se contraponen, lo que hace valiosos a los estudios que desde las ciencias sociales se realizan y, desde diversas ópticas, se hagan propuestas de política pública balanceadas que consideren lo mejor de cada enfoque, pero sin desechar por completo los antagónicos.Universidad Autónoma Chaping
Regulatory sites for splicing in human basal ganglia are enriched for disease-relevant information
Genome-wide association studies have generated an increasing number of common genetic variants associated with neurological and psychiatric disease risk. An improved understanding of the genetic control of gene expression in human brain is vital considering this is the likely modus operandum for many causal variants. However, human brain sampling complexities limit the explanatory power of brain-related expression quantitative trait loci (eQTL) and allele-specific expression (ASE) signals. We address this, using paired genomic and transcriptomic data from putamen and substantia nigra from 117 human brains, interrogating regulation at different RNA processing stages and uncovering novel transcripts. We identify disease-relevant regulatory loci, find that splicing eQTLs are enriched for regulatory information of neuron-specific genes, that ASEs provide cell-specific regulatory information with evidence for cellular specificity, and that incomplete annotation of the brain transcriptome limits interpretation of risk loci for neuropsychiatric disease. This resource of regulatory data is accessible through our web server, http://braineacv2.inf.um.es/
Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies
Background Genome-wide association studies (GWAS) in Parkinson's disease have increased the scope of biological knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into the causes of Parkinson's disease. Methods We did a meta-analysis of 17 datasets from Parkinson's disease GWAS available from European ancestry samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson's disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation. Findings Between Oct 1, 2017, and Aug 9, 2018, we analysed 7·8 million single nucleotide polymorphisms in 37 688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson's disease but have a first degree relative that does), and 1·4 million controls. We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16–36% of the heritable risk of Parkinson's disease depending on prevalence. Integrating methylation and expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested Parkinson's disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0·0035 for intracranial volume, p=0·024 for putamen volume), smoking status (p=0·024), and educational attainment (p=0·038). Mendelian randomisation between cognitive performance and Parkinson's disease risk showed a robust association (p=8·00 × 10−7). Interpretation These data provide the most comprehensive survey of genetic risk within Parkinson's disease to date, to the best of our knowledge, by revealing many additional Parkinson's disease risk loci, providing a biological context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. These associations derived from European ancestry datasets will need to be followed-up with more diverse data. Funding The National Institute on Aging at the National Institutes of Health (USA), The Michael J Fox Foundation, and The Parkinson's Foundation (see appendix for full list of funding sources)
Recommended from our members
Identification of candidate Parkinson disease genes by integrating genome-wide association study, expression, and epigenetic data sets
Importance Substantial genome-wide association study (GWAS) work in Parkinson disease (PD) has led to the discovery of an increasing number of loci shown reliably to be associated with increased risk of disease. Improved understanding of the underlying genes and mechanisms at these loci will be key to understanding the pathogenesis of PD.
Objective To investigate what genes and genomic processes underlie the risk of sporadic PD.
Design and Setting This genetic association study used the bioinformatic tools Coloc and transcriptome-wide association study (TWAS) to integrate PD case-control GWAS data published in 2017 with expression data (from Braineac, the Genotype-Tissue Expression [GTEx], and CommonMind) and methylation data (derived from UK Parkinson brain samples) to uncover putative gene expression and splicing mechanisms associated with PD GWAS signals. Candidate genes were further characterized using cell-type specificity, weighted gene coexpression networks, and weighted protein-protein interaction networks.
Main Outcomes and Measures It was hypothesized a priori that some genes underlying PD loci would alter PD risk through changes to expression, splicing, or methylation. Candidate genes are presented whose change in expression, splicing, or methylation are associated with risk of PD as well as the functional pathways and cell types in which these genes have an important role.
Results Gene-level analysis of expression revealed 5 genes (WDR6 [OMIM 606031], CD38 [OMIM 107270], GPNMB [OMIM 604368], RAB29 [OMIM 603949], and TMEM163 [OMIM 618978]) that replicated using both Coloc and TWAS analyses in both the GTEx and Braineac expression data sets. A further 6 genes (ZRANB3 [OMIM 615655], PCGF3 [OMIM 617543], NEK1 [OMIM 604588], NUPL2 [NCBI 11097], GALC [OMIM 606890], and CTSB [OMIM 116810]) showed evidence of disease-associated splicing effects. Cell-type specificity analysis revealed that gene expression was overall more prevalent in glial cell types compared with neurons. The weighted gene coexpression performed on the GTEx data set showed that NUPL2 is a key gene in 3 modules implicated in catabolic processes associated with protein ubiquitination and in the ubiquitin-dependent protein catabolic process in the nucleus accumbens, caudate, and putamen. TMEM163 and ZRANB3 were both important in modules in the frontal cortex and caudate, respectively, indicating regulation of signaling and cell communication. Protein interactor analysis and simulations using random networks demonstrated that the candidate genes interact significantly more with known mendelian PD and parkinsonism proteins than would be expected by chance.
Conclusions and Relevance Together, these results suggest that several candidate genes and pathways are associated with the findings observed in PD GWAS studies
Common variants in Alzheimer's disease and risk stratification by polygenic risk scores.
Funder: Funder: Fundación bancaria ‘La Caixa’ Number: LCF/PR/PR16/51110003 Funder: Grifols SA Number: LCF/PR/PR16/51110003 Funder: European Union/EFPIA Innovative Medicines Initiative Joint Number: 115975 Funder: JPco-fuND FP-829-029 Number: 733051061Genetic discoveries of Alzheimer's disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer's disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer's disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer's disease
Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes
Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues
- …