51 research outputs found

    Constraining Collapsar r-Process Models through Stellar Abundances

    Full text link
    We use observations of heavy elements in very metal-poor stars ([Fe/H] < -2.5) in order to place constraints on the viability of collapsar models as a significant source of the r-process. We combine bipolar explosion nucleosynthesis calculations with recent disk calculations to make predictions of the observational imprints these explosions would leave on very metal-poor stars. We find that a source of low (~ 0.1-0.5 M⊙M_\odot) Fe mass which also yields a relatively high (> 0.08 M⊙M_\odot) r-process mass would, after subsequently mixing and forming new stars, result in [r/Fe] abundances up to three orders of magnitude higher than those seen in stars. In order to match inferred abundances, 10-103M⊙^3 M_\odot of Fe would need be efficiently incorporated into the r-process ejecta. We show that Fe enhancement and hence [r/Fe] dilution from other nearby supernovae is not able to explain the observations unless significant inflow of pristine gas occurs before the ejecta are able to form new stars. Finally, we show that the inferred [Eu/Fe] abundances require levels of gas mixing which are in conflict with other properties of r-process enhanced metal-poor stars. Our results suggest that early r-process production is likely to be spatially uncorrelated with Fe production, a condition which can be satisfied by neutron star mergers due to their large kick velocities and purely r-process yields.Comment: 6 pages, 2 figures, accepted for publication in ApJ

    The Stars in M15 Were Born with the r-process

    Get PDF
    High-resolution spectroscopy of stars on the red giant branch (RGB) of the globular cluster M15 has revealed a large (~1 dex) dispersion in the abundances of r-process elements such as Ba and Eu. Neutron star mergers (NSMs) have been proposed as a major source of the r-process. However, most NSM models predict a delay time longer than the timescale for cluster formation. One possibility is that a NSM polluted the surfaces of stars in M15 long after the cluster finished forming. In this case, the abundances of the polluting elements would decrease in the first dredge-up as stars turn on to the RGB. We present Keck/DEIMOS abundances of Ba in 66 stars along the entire RGB and the top of the main sequence. The Ba abundances have no trend with stellar luminosity (evolutionary phase). Therefore, the stars were born with the Ba that they have today, and Ba did not originate in a source with a delay time longer than the timescale for cluster formation. In particular, if the source of Ba was a NSM, it would have had a very short delay time. Alternatively, if Ba enrichment took place before the formation of the cluster, an inhomogeneity of a factor of 30 in Ba abundance needs to be able to persist over the length scale of the gas cloud that formed M15, which is unlikely

    Accretion Disk Assembly During Common Envelope Evolution: Implications for Feedback and LIGO Binary Black Hole Formation

    Full text link
    During a common envelope episode in a binary system, the engulfed companion spirals to tighter orbital separations under the influence of drag from the surrounding envelope material. As this object sweeps through material with a steep radial gradient of density, net angular momentum is introduced into the flow, potentially leading to the formation of an accretion disk. The presence of a disk would have dramatic consequences for the outcome of the interaction because accretion might be accompanied by strong, polar outflows with enough energy to unbind the entire envelope. Without a detailed understanding of the necessary conditions for disk formation during common envelope, therefore, it is difficult to accurately predict the population of merging compact binaries. This paper examines the conditions for disk formation around objects embedded within common envelopes using the `wind tunnel' formalism developed by MacLeod et al. (2017). We find that the formation of disks is highly dependent on the compressibility of the envelope material. Disks form only in the most compressible of stellar envelope gas, found in envelopes' outer layers in zones of partial ionization. These zones are largest in low-mass stellar envelopes, but comprise small portions of the envelope mass and radius in all cases. We conclude that disk formation and associated accretion feedback in common envelope is rare, and if it occurs, transitory. The implication for LIGO black hole binary assembly is that by avoiding strong accretion feedback, common envelope interactions should still result in the substantial orbital tightening needed to produce merging binaries.Comment: 12 pages, 10 figures, submitted to Ap

    r-process enrichment of ultra-faint dwarf galaxies by fast merging double neutron stars

    Full text link
    The recent aLIGO/aVirgo discovery of gravitational waves from the neutron star merger (NSM) GW170817 and the follow up kilonova observations have shown that NSMs produce copious amount of r-process material. However, it is difficult to reconcile the large natal kicks and long average merging times of Double Neutron Stars (DNSs), with the levels of r-process enrichment seen in ultra faint dwarf (UFD) galaxies such as Reticulum II and Tucana III. Assuming that such dwarf systems have lost a significant fraction of their stellar mass through tidal stripping, we conclude that contrary to most current models, it is the DNSs with rather large natal kicks but very short merging timescales that can enrich UFD-type galaxies. These binaries are either on highly eccentric orbits, or form with very short separations due to an additional mass-transfer between the first-born neutron star and a naked helium star, progenitor of the second-born neutron star. These DNSs are born with a frequency that agrees with the statistics of the r-process UFDs, and merge well within the virial radius of their host halos, therefore contributing significantly to their r-process enrichment.Comment: Accepted for publication in Ap

    Predictions for Electromagnetic Counterparts to Neutron Star Mergers Discovered during LIGO-Virgo-KAGRA Observing Runs 4 and 5

    Full text link
    We present a comprehensive, configurable open-source framework for estimating the rate of electromagnetic detection of kilonovae (KNe) associated with gravitational wave detections of binary neutron star (BNS) mergers. We simulate the current LIGO-Virgo-KAGRA (LVK) observing run (O4) using up-to-date sensitivity and up-time values as well as the next observing run (O5) using predicted sensitivities. We find the number of discoverable kilonovae during LVK O4 to be 1−1+4{ 1}_{- 1}^{+ 4} or 2−2+3{ 2 }_{- 2 }^{+ 3 }, (at 90% confidence) depending on the distribution of NS masses in coalescing binaries, with the number increasing by an order of magnitude during O5 to 19−11+24{ 19 }_{- 11 }^{+ 24 }. Regardless of mass model, we predict at most five detectable KNe (at 95% confidence) in O4. We also produce optical and near-infrared light curves that correspond to the physical properties of each merging system. We have collated important information for allocating observing resources and directing search and follow-up observations including distributions of peak magnitudes in several broad bands and timescales for which specific facilities can detect each KN. The framework is easily adaptable, and new simulations can quickly be produced as input information such as merger rates and NS mass distributions are refined. Finally, we compare our suite of simulations to the thus-far completed portion of O4 (as of October 14, 2023), finding a median number of discoverable KNe of 0 and a 95-percentile upper limit of 2, consistent with no detection so far in O4.Comment: 16 pages, 13 figures, MNRAS: Accepted 2023 November 25. Received 2023 November 16; in original form 2023 October 2

    Multi-Messenger Astronomy with Extremely Large Telescopes

    Get PDF
    The field of time-domain astrophysics has entered the era of Multi-messenger Astronomy (MMA). One key science goal for the next decade (and beyond) will be to characterize gravitational wave (GW) and neutrino sources using the next generation of Extremely Large Telescopes (ELTs). These studies will have a broad impact across astrophysics, informing our knowledge of the production and enrichment history of the heaviest chemical elements, constrain the dense matter equation of state, provide independent constraints on cosmology, increase our understanding of particle acceleration in shocks and jets, and study the lives of black holes in the universe. Future GW detectors will greatly improve their sensitivity during the coming decade, as will near-infrared telescopes capable of independently finding kilonovae from neutron star mergers. However, the electromagnetic counterparts to high-frequency (LIGO/Virgo band) GW sources will be distant and faint and thus demand ELT capabilities for characterization. ELTs will be important and necessary contributors to an advanced and complete multi-messenger network.Comment: White paper submitted to the Astro2020 Decadal Surve

    VEGFR2 promotes central endothelial activation and the spread of pain in inflammatory arthritis

    Get PDF
    Chronic pain can develop in response to conditions such as inflammatory arthritis. The central mechanisms underlying the development and maintenance of chronic pain in humans are not well elucidated although there is evidence for a role of microglia and astrocytes. However in pre-clinical models of pain, including models of inflammatory arthritis, there is a wealth of evidence indicating roles for pathological glial reactivity within the CNS. In the spinal dorsal horn of rats with painful inflammatory arthritis we found both a significant increase in CD11b+ microglia-like cells and GFAP+ astrocytes associated with blood vessels, and the number of activated blood vessels expressing the adhesion molecule ICAM-1, indicating potential glio-vascular activation. Using pharmacological interventions targeting VEGFR2 in arthritic rats, to inhibit endothelial cell activation, the number of dorsal horn ICAM-1+ blood vessels, CD11b+ microglia and the development of secondary mechanical allodynia, an indicator of central sensitization, were all prevented. Targeting endothelial VEGFR2 by inducible Tie2-specific VEGFR2 knock-out also prevented secondary allodynia in mice and glio-vascular activation in the dorsal horn in response to inflammatory arthritis. Inhibition of VEGFR2 in vitro significantly blocked ICAM-1-dependent monocyte adhesion to brain microvascular endothelial cells, when stimulated with inflammatory mediators TNFa and VEGF-A165a. Taken together our findings suggest that a novel VEGFR2-mediated spinal cord gliovascular mechanism may promote peripheral CD11b+ circulating cell transmigration into the CNS parenchyma and contribute to the development of chronic pain in inflammatory arthritis. We hypothesise that preventing this glio-vascular activation and circulating cell translocation into the spinal cord could be a new therapeutic strategy for pain caused by rheumatoid arthritis
    • …
    corecore