20 research outputs found

    p63 is an alternative p53 repressor in melanoma that confers chemoresistance and a poor prognosis.

    Get PDF
    The role of apoptosis in melanoma pathogenesis and chemoresistance is poorly characterized. Mutations in TP53 occur infrequently, yet the TP53 apoptotic pathway is often abrogated. This may result from alterations in TP53 family members, including the TP53 homologue TP63. Here we demonstrate that TP63 has an antiapoptotic role in melanoma and is responsible for mediating chemoresistance. Although p63 was not expressed in primary melanocytes, up-regulation of p63 mRNA and protein was observed in melanoma cell lines and clinical samples, providing the first evidence of significant p63 expression in this lineage. Upon genotoxic stress, endogenous p63 isoforms were stabilized in both nuclear and mitochondrial subcellular compartments. Our data provide evidence of a physiological interaction between p63 with p53 whereby translocation of p63 to the mitochondria occurred through a codependent process with p53, whereas accumulation of p53 in the nucleus was prevented by p63. Using RNA interference technology, both isoforms of p63 (TA and ΔNp63) were demonstrated to confer chemoresistance, revealing a novel oncogenic role for p63 in melanoma cells. Furthermore, expression of p63 in both primary and metastatic melanoma clinical samples significantly correlated with melanoma-specific deaths in these patients. Ultimately, these observations provide a possible explanation for abrogation of the p53-mediated apoptotic pathway in melanoma, implicating novel approaches aimed at sensitizing melanoma to therapeutic agents

    NAD(P)H Quinone Oxidoreductase Protects TAp63γ from Proteasomal Degradation and Regulates TAp63γ-Dependent Growth Arrest

    Get PDF
    BACKGROUND: p63 is a member of the p53 transcription factor family. p63 is expressed from two promoters resulting in proteins with opposite functions: the transcriptionally active TAp63 and the dominant-negative DeltaNp63. Similar to p53, the TAp63 isoforms induce cell cycle arrest and apoptosis. The DeltaNp63 isoforms are dominant-negative variants opposing the activities of p53, TAp63 and TAp73. To avoid unnecessary cell death accompanied by proper response to stress, the expression of the p53 family members must be tightly regulated. NAD(P)H quinone oxidoreductase (NQO1) has recently been shown to interact with and inhibit the degradation of p53. Due to the structural similarities between p53 and p63, we were interested in studying the ability of wild-type and polymorphic, inactive NQO1 to interact with and stabilize p63. We focused on TAp63gamma, as it is the most potent transcription activator and it is expected to have a role in tumor suppression. PRINCIPAL FINDINGS: We show that TAp63gamma can be degraded by the 20S proteasomes. Wild-type but not polymorphic, inactive NQO1 physically interacts with TAp63gamma, stabilizes it and protects it from this degradation. NQO1-mediated TAp63gamma stabilization was especially prominent under stress. Accordingly, we found that downregulation of NQO1 inhibits TAp63gamma-dependant p21 upregulation and TAp63gamma-induced growth arrest stimulated by doxorubicin. CONCLUSIONS/SIGNIFICANCE: Our report is the first to identify this new mechanism demonstrating a physical and functional relationship between NQO1 and the most potent p63 isoform, TAp63gamma. These findings appoint a direct role for NQO1 in the regulation of TAp63gamma expression, especially following stress and may therefore have clinical implications for tumor development and therapy

    Kinase Domain Mutants of Bcr-Abl Exhibit Altered Transformation Potency, Kinase Activity, and Substrate Utilization, Irrespective of Sensitivity to Imatinib

    No full text
    Kinase domain (KD) mutations of Bcr-Abl interfering with imatinib binding are the major mechanism of acquired imatinib resistance in patients with Philadelphia chromosome-positive leukemia. Mutations of the ATP binding loop (p-loop) have been associated with a poor prognosis. We compared the transformation potency of five common KD mutants in various biological assays. Relative to unmutated (native) Bcr-Abl, the ATP binding loop mutants Y253F and E255K exhibited increased transformation potency, M351T and H396P were less potent, and the performance of T315I was assay dependent. The transformation potency of Y253F and M351T correlated with intrinsic Bcr-Abl kinase activity, whereas the kinase activity of E255K, H396P, and T315I did not correlate with transforming capabilities, suggesting that additional factors influence transformation potency. Analysis of the phosphotyrosine proteome by mass spectroscopy showed differential phosphorylation among the mutants, a finding consistent with altered substrate specificity and pathway activation. Mutations in the KD of Bcr-Abl influence kinase activity and signaling in a complex fashion, leading to gain- or loss-of-function variants. The drug resistance and transformation potency of mutants may determine the outcome of patients on therapy with Abl kinase inhibitors

    A β-catenin/TCF-coordinated chromatin loop at MYC integrates 5′ and 3′ Wnt responsive enhancers

    No full text
    Aberrant MYC gene expression by the Wnt/β-catenin pathway is implicated in colorectal carcinogenesis. Wnt/β-catenin signaling stimulates association of the β-catenin coactivator complex with two Wnt responsive enhancers (WREs) located in close proximity to MYC gene boundaries. Each enhancer directly binds members of the TCF/Lef family of transcription factors that, in turn, recruit β-catenin. In a previous report, we showed that the downstream MYC enhancer (MYC 3′ WRE) cooperated with the upstream enhancer (MYC 5′ WRE) to activate expression of a heterologous reporter gene in response to Wnt/β-catenin and mitogen signaling. Here we use chromatin conformation capture (3C) to show that the MYC 5′ and 3′ WREs are juxtaposed at the genomic MYC locus during active transcription. This MYC 5′3′ chromatin loop is present in HCT116 human colorectal cancer cells that contain high levels of nuclear β-catenin and is absent in HEK293 cells that contain trace amounts of nuclear β-catenin. Depletion of functional β-catenin/TCF complexes blocks formation of the MYC 5′3 chromatin loop. Furthermore, we find that the chromatin loop is absent in quiescent cells, but is rapidly and transiently induced by serum mitogens in a β-catenin-dependent manner. Thus, we propose that a distinct chromatin architecture coordinated by β-catenin/TCF-bound WREs accompanies transcriptional activation of MYC gene expression

    TAp63 induces senescence and suppresses tumorigenesis in vivo

    No full text
    p63 is distinct from its homologue p53 in that its role as a tumour suppressor is controversial, an issue complicated by the existence of two classes of p63 isoforms1. Here we show that TAp63 isoforms are robust mediators of senescence that inhibit tumorigenesis in vivo. Whereas gain of TAp63 induces senescence, loss of p63 enhances sarcoma development in mice lacking p53. Using a new TAp63-specific conditional mouse model, we demonstrate that TAp63 isoforms are essential for Ras-induced senescence, and that TAp63 deficiency increases proliferation and enhances Ras-mediated oncogenesis in the context of p53 deficiency in vivo. TAp63 induces senescence independently of p53, p19Arf and p16Ink4a, but requires p21Waf/Cip1 and Rb. TAp63-mediated senescence overrides Ras-driven transformation of p53-deficient cells, preventing tumour initiation, and doxycycline-regulated expression of TAp63 activates p21Waf/Cip1, induces senescence and inhibits progression of established tumours in vivo. Our findings demonstrate that TAp63 isoforms function as tumour suppressors by regulating senescence through p53-independent pathways. The ability of TAp63 to trigger senescence and halt tumorigenesis irrespective of p53 status identifies TAp63 as a potential target of anti-cancer therapy for human malignancies with compromised p5
    corecore