27 research outputs found

    Sex differences in epigenetic age in Mediterranean high longevity regions

    Get PDF
    Sex differences in aging manifest in disparities in disease prevalence, physical health, and lifespan, where women tend to have greater longevity relative to men. However, in the Mediterranean Blue Zones of Sardinia (Italy) and Ikaria (Greece) are regions of centenarian abundance, male-female centenarian ratios are approximately one, diverging from the typical trend and making these useful regions in which to study sex differences of the oldest old. Additionally, these regions can be investigated as examples of healthy aging relative to other populations. DNA methylation (DNAm)-based predictors have been developed to assess various health biomarkers, including biological age, Pace of Aging, serum interleukin-6 (IL-6), and telomere length. Epigenetic clocks are biological age predictors whose deviation from chronological age has been indicative of relative health differences between individuals, making these useful tools for interrogating these differences in aging. We assessed sex differences between the Horvath, Hannum, GrimAge, PhenoAge, Skin and Blood, and Pace of Aging predictors from individuals in two Mediterranean Blue Zones and found that men displayed positive epigenetic age acceleration (EAA) compared to women according to all clocks, with significantly greater rates according to GrimAge (β = 3.55; p = 1.22 × 10-12), Horvath (β = 1.07; p = 0.00378) and the Pace of Aging (β = 0.0344; p = 1.77 × 10-08). Other DNAm-based biomarkers findings indicated that men had lower DNAm-predicted serum IL-6 scores (β = -0.00301, p = 2.84 × 10-12), while women displayed higher DNAm-predicted proportions of regulatory T cells than men from the Blue Zone (p = 0.0150, 95% Confidence Interval [0.00131, 0.0117], Cohen's d = 0.517). All clocks showed better correlations with chronological age in women from the Blue Zones than men, but all clocks showed large mean absolute errors (MAE >30 years) in both sexes, except for PhenoAge (MAE <5 years). Thus, despite their equal survival to older ages in these Mediterranean Blue Zones, men in these regions remain biologically older by most measured DNAm-derived metrics than women, with the exception of the IL-6 score and proportion of regulatory T cells

    Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns

    Get PDF
    Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall n = 2365). We use Akaike’s information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease risk

    Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns

    Get PDF
    Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall n = 2365). We use Akaike's information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease risk.Peer reviewe

    Risk-focused differences in molecular processes implicated in SARS-CoV-2 infection: corollaries in DNA methylation and gene expression

    No full text
    Background Understanding the molecular basis of susceptibility factors to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global health imperative. It is well-established that males are more likely to acquire SARS-CoV-2 infection and exhibit more severe outcomes. Similarly, exposure to air pollutants and pre-existing respiratory chronic conditions, such as asthma and chronic obstructive respiratory disease (COPD) confer an increased risk to coronavirus disease 2019 (COVID-19). Methods We investigated molecular patterns associated with risk factors in 398 candidate genes relevant to COVID-19 biology. To accomplish this, we downloaded DNA methylation and gene expression data sets from publicly available repositories (GEO and GTEx Portal) and utilized data from an empirical controlled human exposure study conducted by our team. Results First, we observed sex-biased DNA methylation patterns in autosomal immune genes, such as NLRP2, TLE1, GPX1, and ARRB2 (FDR  0.05). Second, our analysis on the X-linked genes identified sex associated DNA methylation profiles in genes, such as ACE2, CA5B, and HS6ST2 (FDR  0.05). These associations were observed across multiple respiratory tissues (lung, nasal epithelia, airway epithelia, and bronchoalveolar lavage) and in whole blood. Some of these genes, such as NLRP2 and CA5B, also exhibited sex-biased gene expression patterns. In addition, we found differential DNA methylation patterns by COVID-19 status for genes, such as NLRP2 and ACE2 in an exploratory analysis of an empirical data set reporting on human COVID-9 infections. Third, we identified modest DNA methylation changes in CpGs associated with PRIM2 and TATDN1 (FDR  0.05) in response to particle-depleted diesel exhaust in bronchoalveolar lavage. Finally, we captured a DNA methylation signature associated with COPD diagnosis in a gene involved in nicotine dependence (COMT) (FDR  0.05). Conclusion Our findings on sex differences might be of clinical relevance given that they revealed molecular associations of sex-biased differences in COVID-19. Specifically, our results hinted at a potentially exaggerated immune response in males linked to autosomal genes, such as NLRP2. In contrast, our findings at X-linked loci such as ACE2 suggested a potentially distinct DNA methylation pattern in females that may interact with its mRNA expression and inactivation status. We also found tissue-specific DNA methylation differences in response to particulate exposure potentially capturing a nitrogen dioxide (NO2) effect—a contributor to COVID-19 susceptibility. While we identified a molecular signature associated with COPD, all COPD-affected individuals were smokers, which may either reflect an association with the disease, smoking, or may highlight a compounded effect of these two risk factors in COVID-19. Overall, our findings point towards a molecular basis of variation in susceptibility factors that may partly explain disparities in the risk for SARS-CoV-2 infection.Medicine, Faculty ofNon UBCMedical Genetics, Department ofMedicine, Department ofRespiratory Medicine, Division ofReviewedFacultyResearcherOthe

    Risk-focused differences in molecular processes implicated in SARS-CoV-2 infection: corollaries in DNA methylation and gene expression

    No full text
    Abstract Background Understanding the molecular basis of susceptibility factors to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global health imperative. It is well-established that males are more likely to acquire SARS-CoV-2 infection and exhibit more severe outcomes. Similarly, exposure to air pollutants and pre-existing respiratory chronic conditions, such as asthma and chronic obstructive respiratory disease (COPD) confer an increased risk to coronavirus disease 2019 (COVID-19). Methods We investigated molecular patterns associated with risk factors in 398 candidate genes relevant to COVID-19 biology. To accomplish this, we downloaded DNA methylation and gene expression data sets from publicly available repositories (GEO and GTEx Portal) and utilized data from an empirical controlled human exposure study conducted by our team. Results First, we observed sex-biased DNA methylation patterns in autosomal immune genes, such as NLRP2, TLE1, GPX1, and ARRB2 (FDR  0.05). Second, our analysis on the X-linked genes identified sex associated DNA methylation profiles in genes, such as ACE2, CA5B, and HS6ST2 (FDR  0.05). These associations were observed across multiple respiratory tissues (lung, nasal epithelia, airway epithelia, and bronchoalveolar lavage) and in whole blood. Some of these genes, such as NLRP2 and CA5B, also exhibited sex-biased gene expression patterns. In addition, we found differential DNA methylation patterns by COVID-19 status for genes, such as NLRP2 and ACE2 in an exploratory analysis of an empirical data set reporting on human COVID-9 infections. Third, we identified modest DNA methylation changes in CpGs associated with PRIM2 and TATDN1 (FDR  0.05) in response to particle-depleted diesel exhaust in bronchoalveolar lavage. Finally, we captured a DNA methylation signature associated with COPD diagnosis in a gene involved in nicotine dependence (COMT) (FDR  0.05). Conclusion Our findings on sex differences might be of clinical relevance given that they revealed molecular associations of sex-biased differences in COVID-19. Specifically, our results hinted at a potentially exaggerated immune response in males linked to autosomal genes, such as NLRP2. In contrast, our findings at X-linked loci such as ACE2 suggested a potentially distinct DNA methylation pattern in females that may interact with its mRNA expression and inactivation status. We also found tissue-specific DNA methylation differences in response to particulate exposure potentially capturing a nitrogen dioxide (NO2) effect—a contributor to COVID-19 susceptibility. While we identified a molecular signature associated with COPD, all COPD-affected individuals were smokers, which may either reflect an association with the disease, smoking, or may highlight a compounded effect of these two risk factors in COVID-19. Overall, our findings point towards a molecular basis of variation in susceptibility factors that may partly explain disparities in the risk for SARS-CoV-2 infection

    Maternal epigenetic clocks measured during pregnancy do not predict gestational age at delivery or offspring birth outcomes: a replication study in metropolitan Cebu, Philippines

    No full text
    Adverse birth outcomes, such as early gestational age and low birth weight, can have lasting effects on morbidity and mortality, with impacts that persist into adulthood. Identifying the maternal factors that contribute to adverse birth outcomes in the next generation is thus a priority. Epigenetic clocks, which have emerged as powerful tools for quantifying biological aging and various dimensions of physiological dysregulation, hold promise for clarifying relationships between maternal biology and infant health, including the maternal factors or states that predict birth outcomes. Nevertheless, studies exploring the relationship between maternal epigenetic age and birth outcomes remain few. Here, we attempt to replicate a series of analyses previously reported in a US-based sample, using a larger similarly aged sample (n = 296) of participants of a long-running study in the Philippines. New pregnancies were identified prospectively, dried blood spot samples were collected during the third trimester, and information was obtained on gestational age at delivery and offspring weight after birth. Genome-wide DNA methylation was assessed with the Infinium EPIC array. Using a suite of 15 epigenetic clocks, we only found one significant relationship: advanced age on the epigenetic clock trained on leptin predicted a significantly earlier gestational age at delivery (β = − 0.15, p = 0.009). Of the other 29 relationships tested predicting gestational age and offspring birth weight, none were statistically significant. In this sample of Filipino women, epigenetic clocks capturing multiple dimensions of biology and health do not predict birth outcomes in offspring.Medicine, Faculty ofNon UBCMedical Genetics, Department ofReviewedFacultyResearche

    Invasion science: Looking forward rather than revisiting old ground – A reply to Zenni et al.

    No full text
    Using horizon scanning techniques, we identified 14 emerging issues, not yet widely recognized or understood, that are likely to affect how biological invasions are studied and managed on a global scale [1]. Zenni et al. [2] do not comment on the major issues identified in our study. Instead, they draw attention to the nationalities of our authorship and the lack of representation from developing countries, and they imply that as a consequence our paper promotes misconceptions and ignores key issues affecting such countries. In particular, they criticize our ‘opinionated statement’ that most developing countries have a limited capacity to respond to invasions. This is not merely our opinion; we cited Early et al. [3], whose analysis concluded that proactive capacities, although far from sufficient globally, are more advanced in countries with a high human development index (HDI) than in those with a low HDI. The term ‘developing country’ is open to misinterpretation, but is often defined as a sovereign state with a low HDI and a less-developed industrial base relative to other countries (https://en.wikipedia.org/wiki/Developing_country), and such countries occur mostly in sub-Saharan Africa and Asia. The ten ‘developing countries’ listed by Zenni et al. as having national invasive species strategies or databases (i.e., Mexico, Jamaica, Guyana, Cuba, Brazil, Colombia, Uruguay, Argentina, Chile, and South Africa) are arguably more similar to developed countries, in terms of HDI, than to many of the poorest countries of the world [4]

    Peroxisome proliferator-activated receptor gamma gene variants modify human airway and systemic responses to indoor dibutyl phthalate exposure

    No full text
    Abstract Background Single nucleotide polymorphisms (SNPs) of peroxisome proliferator-activated receptor gamma (PPAR-γ; gene: PPARG) and oxidative stress genes are associated with asthma risk. However, whether such variants modulate responses to dibutyl phthalate (DBP), a common plasticizer associated with increased asthma development, remains unknown. The purpose of this study is to investigate how SNPs in PPARG and oxidative stress genes, as represented by two separate genetic risk scores, modify the impact of DBP exposure on lung function and the airway and systemic response after an inhaled allergen challenge. Methods We conducted a double-blinded human crossover study with sixteen allergen-sensitized participants exposed for three hours to DBP and control air on distinct occasions separated by a 4-week washout. Each exposure was followed by an allergen inhalation challenge; subsequently, lung function was measured, and blood and bronchoalveolar lavage (BAL) were collected and analyzed for cell counts and allergen-specific immunoglobulin E (IgE). Genetic risk scores for PPAR-γ (P-GRS; weighted sum of PPARG SNPs rs10865710, rs709158, and rs3856806) and oxidative stress (OS-GRS; unweighted sum of 16 SNPs across multiple genes) were developed, and their ability to modify DBP effects were assessed using linear mixed-effects models. Results P-GRS and OS-GRS modified DBP effects on allergen-specific IgE in blood at 20 h (interaction effect [95% CI]: 1.43 [1.13 to 1.80], p = 0.005) and 3 h (0.99 [0.98 to 1], p = 0.03), respectively. P-GRS also modified DBP effects on Th2 cells in blood at 3 h (− 25.2 [− 47.7 to − 2.70], p = 0.03) and 20 h (− 39.1 [− 57.9 to − 20.3], p = 0.0005), and Th2 cells in BAL at 24 h (− 4.99 [− 8.97 to − 1.01], p = 0.02). An increasing P-GRS associated with reduced DBP effect on Th2 cells. Neither GRS significantly modified DBP effects on lung function parameters. Conclusions PPAR-γ variants modulated several airway and systemic immune responses to the ubiquitous chemical plasticizer DBP. Our results suggest that PPAR-γ variants may play a greater role than those in oxidative stress-related genes in airway allergic responses to DBP.Medicine, Faculty ofNon UBCMedical Genetics, Department ofMedicine, Department ofReviewedFacultyResearcherPostdoctoralGraduat

    Association between the FTO rs9939609 single nucleotide polymorphism and dietary adherence during a 2-year caloric restriction intervention: Exploratory analyses from CALERIETM phase 2

    No full text
    Caloric restriction (CR) improves markers of aging in humans; but it is not known if the fat mass and obesity-associated gene (FTO) rs9939609 single nucleotide polymorphism (SNP), which is associated with appetite and energy intake, influences adherence to prolonged CR. Utilizing data from the two-year Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE™) phase 2 randomized controlled trial, we tested whether the FTO rs9939609 SNP was associated with adherence to CR in healthy adults without obesity. As secondary aims, we assessed whether the FTO rs9939609 SNP was associated with changes in body composition, biomarkers of aging, and eating behaviors. Participants were randomized into either a CR group that targeted a 25% reduction in energy intake compared to the habitual energy intake at baseline, or an ad libitum (AL) control group. Participants were genotyped for the FTO rs9939609 SNP. Dietary adherence was determined through changes in energy intake using doubly labeled water and changes in body composition at baseline, month 12, and month 24 in both the CR and AL condition. Weight, body composition, resting metabolic rate (RMR), adiponectin, insulin, leptin, and eating behaviors were measured at the same timepoints. A total of 144 participants (91 CR and 53 AL, age: 38.6 ± 7.1 years; body mass index: 25.3 ± 1.7 kg/m2) were studied. Of these, 27 were homozygous for the ‘obesity-risk’ A allele (AA), while 44 were homozygous for the T allele (TT) and 73 were heterozygotes (AT). By design, the CR group exhibited greater percent CR compared to the AL group during the trial (P &lt; 0.01), but no genotype-by-treatment interaction was observed for change in energy intake or percent CR (P ≥ 0.40). The FTO rs9939609 SNP was also negligibly associated with change in most other endpoints (P ≥ 0.13), though AAs showed a reduction in RMR adjusted for body composition change over the 24 months relative to TTs (genotype-by-treatment interaction: P = 0.03). In a two-year CR intervention delivered to healthy individuals without obesity, the FTO rs9939609 SNP was not associated with adherence to CR and did not alter improvements in most aging biomarkers

    Does non-native diversity mirror Earth's biodiversity?

    No full text
    Aim: Human activities have introduced numerous non-native species (NNS) worldwide. Understanding and predicting large-scale NNS establishment patterns remain fundamental scientific challenges. Here, we evaluate if NNS composition represents a proportional subset of the total species pool available to invade (i.e. total global biodiversity), or, conversely, certain taxa are disproportionately pre-disposed to establish in non-native areas. Location: Global. Time period: Present day. Major taxa studied: Global diversity. Methods: We compiled one of the most comprehensive global databases of NNS (36,822 established species) to determine if NNS diversity is a representative proportional subset of global biodiversity. Results: Our study revealed that, while NNS diversity mirrors global biodiversity to a certain extent, due to significant deviance from the null model it is not always a representative proportional subset of global biodiversity. The strength of global biodiversity as a predictor depended on the taxonomic scale, with successive lower taxonomic levels less predictive than the one above it. Consequently, on average, 58%, 42% and 28% of variability in NNS numbers were explained by global biodiversity for phylum, class and family respectively. Moreover, global biodiversity was a similarly strong explanatory variable for NNS diversity among regions, but not habitats (i.e. terrestrial, freshwater and marine), where it better predicted NNS diversity for terrestrial than for freshwater and marine habitats. Freshwater and marine habitats were also greatly understudied relative to invasions in the terrestrial habitats. Over-represented NNS relative to global biodiversity tended to be those intentionally introduced and/or ‘hitchhikers’ associated with deliberate introductions. Finally, randomness is likely an important factor in the establishment success of NNS. Main conclusions: Besides global biodiversity, other important explanatory variables for large-scale patterns of NNS diversity likely include propagule and colonization pressures, environmental similarity between native and non-native regions, biased selection of intentionally introduced species and disparate research efforts of habitats and taxa
    corecore