38 research outputs found

    The effects of creatine pyruvate and creatine citrate on performance during high intensity exercise

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A double-blind, placebo-controlled, randomized study was performed to evaluate the effect of oral creatine pyruvate (Cr-Pyr) and creatine citrate (Cr-Cit) supplementation on exercise performance in healthy young athletes.</p> <p>Methods</p> <p>Performance during intermittent handgrip exercise of maximal intensity was evaluated before (pretest) and after (posttest) 28 days of Cr-Pyr (5 g/d, n = 16), Cr-Cit (5 g/d, n = 16) or placebo (pla, 5 g/d, n = 17) intake. Subjects performed ten 15-sec exercise intervals, each followed by 45 sec rest periods.</p> <p>Results</p> <p>Cr-Pyr (p < 0.001) and Cr-Cit (p < 0.01) significantly increased mean power over all intervals. Cr-Cit increased force during the first and second interval (p < 0.01) compared to placebo. The effect of Cr-Cit on force decreased over time and the improvement was not significant at the sixth and ninth interval, whereas Cr-Pyr significantly increased force during all intervals (p < 0.001). Cr-Pyr (p < 0.001) and Cr-Cit (p < 0.01) resulted in an increase in contraction velocity, whereas only Cr-Pyr intake significantly (p < 0.01) increased relaxation velocity. Oxygen consumption measured during rest periods significantly increased with Cr-Pyr (p < 0.05), whereas Cr-Cit and placebo intake did not result in significant improvements.</p> <p>Conclusion</p> <p>It is concluded that four weeks of Cr-Pyr and Cr-Cit intake significantly improves performance during intermittent handgrip exercise of maximal intensity and that Cr-Pyr might benefit endurance, due to enhanced activity of the aerobic metabolism.</p

    Short-Term Supplementation of Sodium Nitrate vs. Sodium Chloride Increases Homoarginine Synthesis in Young Men Independent of Exercise

    Get PDF
    The aim of the study was to investigate the effects of short-term oral administration of inorganic nitrate (NaNO3; n = 8) or placebo (NaCl; n = 9) (each 0.1 mmol/kg body weight/d for 9 days) on plasma amino acids, creatinine, and oxidative stress in healthy young men. At baseline, the plasma concentrations of amino acids did not differ between the groups. At the end of the study, the plasma concentrations of homoarginine (hArg; by 24%, p = 0.0001), citrulline and ornithine (Cit/Orn; by 16%, p = 0.015), and glutamine/glutamate (Gln/Glu; by 6%, p = 0.0003) were higher in the NaNO3 group compared to the NaCl group. The plasma concentrations of sarcosine (Sarc; by 28%, p hArg + Orn, with equilibrium constant Kharg; (2) the formation of guanidinoacetate (GAA) and Orn from Arg and glycine (Gly): Arg + Gly GAA + Orn, with equilibrium constant Kgaa. The plasma Kgaa/KhArg ratio was lower in the NaNO3 group compared to the NaCl group (1.57 vs. 2.02, p = 0.0034). Our study suggests that supplementation of inorganic nitrate increases the AGAT-catalyzed synthesis of hArg and decreases the N-methyltransferase-catalyzed synthesis of GAA, the precursor of creatine. To our knowledge, this is the first study to demonstrate elevation of hArg synthesis by inorganic nitrate supplementation. Remarkably, an increase of 24% corresponds to the synthesis capacity of one kidney in healthy humans. Differences in the association between plasma concentrations of amino acids in the NaNO3 and NaCl groups suggest changes in amino-acid homeostasis. Plasma concentrations of the oxidative stress marker malondialdehyde (MDA) did not change after supplementation of NaNO3 or NaCl over the whole exercise time range. Plasma nitrite concentration turned out to be a more discriminant marker of NaNO3 ingestion than plasma nitrate (area under the receiver operating characteristic curve: 0.951 vs. 0.866, p < 0.0001 each)

    Many Labs 2: Investigating Variation in Replicability Across Samples and Settings

    Get PDF
    We conducted preregistered replications of 28 classic and contemporary published findings, with protocols that were peer reviewed in advance, to examine variation in effect magnitudes across samples and settings. Each protocol was administered to approximately half of 125 samples that comprised 15,305 participants from 36 countries and territories. Using the conventional criterion of statistical significance (p < .05), we found that 15 (54%) of the replications provided evidence of a statistically significant effect in the same direction as the original finding. With a strict significance criterion (p < .0001), 14 (50%) of the replications still provided such evidence, a reflection of the extremely highpowered design. Seven (25%) of the replications yielded effect sizes larger than the original ones, and 21 (75%) yielded effect sizes smaller than the original ones. The median comparable Cohen’s ds were 0.60 for the original findings and 0.15 for the replications. The effect sizes were small (< 0.20) in 16 of the replications (57%), and 9 effects (32%) were in the direction opposite the direction of the original effect. Across settings, the Q statistic indicated significant heterogeneity in 11 (39%) of the replication effects, and most of those were among the findings with the largest overall effect sizes; only 1 effect that was near zero in the aggregate showed significant heterogeneity according to this measure. Only 1 effect had a tau value greater than .20, an indication of moderate heterogeneity. Eight others had tau values near or slightly above .10, an indication of slight heterogeneity. Moderation tests indicated that very little heterogeneity was attributable to the order in which the tasks were performed or whether the tasks were administered in lab versus online. Exploratory comparisons revealed little heterogeneity between Western, educated, industrialized, rich, and democratic (WEIRD) cultures and less WEIRD cultures (i.e., cultures with relatively high and low WEIRDness scores, respectively). Cumulatively, variability in the observed effect sizes was attributable more to the effect being studied than to the sample or setting in which it was studied.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Sociales::Instituto de Investigaciones Psicológicas (IIP

    Changes in myoelectric activity after prolonged muscle disuse

    No full text
    Introduction Strongly restricted muscle activity or complete immobilization result in decrease in muscle mass and force, i.e., muscle atrophy. In this study, we tested whether muscles excitability in the lower extremities is also affected through 21 day of inactivity during bed rest (BR). As a control was used the activity in m. biceps brachii (BB). Methods Voluntary (EMG) and evoked (m-wave) muscle activity were recorded in 8 subjects before BR, at the day after the BR as well as 5 days after the BR (REG) in m. gastrocnemius (GA), m. vastus lateralis (VL) and BB. Torque and EMG were measured during sets of 3 maximum isometric contraction at different angles. During breaks m-waves were excited. The rate of the muscle fatigability was tested in VL during sustained knee extension for 30 s at 50 % MVC. Results In VL the torque decreased after the BR by about 22 % from 261±7 to 205±7 Nm, (P<0.05) and partly recovered during REG to 234±7 Nm (P<0.05). The median power frequency of the EMG (MF) was lower after the BR (84±2 vs. 94±2 Hz). The duration of the m-wave increased from 20.1±0.2 to 20.8±0.2 ms (P<0.05) after the BR. Both parameters did not recover during REG. Signs of muscle fatigability in VL were not different before and after the BR neither for the torque nor for myoelectrical parameters. In GA decrease in torque was about 14% (P<0.05), the MF was not different, the m-wave duration rose from 13.5±0.3 to 14.6±0.3 ms (P<0.05). There were no changes in torque and properties of electrical activity in BB. Discussion One of the reasons for the loss of muscle force due to disuse should be a decrease in the protein synthesis (1). Additionally, our data show that the decrease in force in postural muscles due to BR is accompanied by signs of decrease in the muscle excitability. Thus, muscle atrophy due to disuse apparently involves not only impairment of the contractile apparatus but also the loss of sarcolemmal excitability. References Caiozzo VJ, Haddad F, Lee S, Baker M, Paloski W and Baldwin KM. Artificial gravity as a countermeasure to microgravity: a pilot study examining the effects on knee extensor and plantar flexor muscle groups. J Appl Physiol 107: 39-46, 2009

    High Intensity High Volume Interval Training Improves Endurance Performance and Induces a Nearly Complete Slow-to-Fast Fiber Transformation on the mRNA Level

    Get PDF
    We present here a longitudinal study determining the effects of two 3 week-periods of high intensity high volume interval training (HIHVT) (90 intervals of 6 s cycling at 250% maximum power, Pmax/24 s) on a cycle ergometer. HIHVT was evaluated by comparing performance tests before and after the entire training (baseline, BSL, and endpoint, END) and between the two training sets (intermediate, INT). The mRNA expression levels of myosin heavy chain (MHC) isoforms and markers of energy metabolism were analyzed in M. vastus lateralis biopsies by quantitative real-time PCR. In incremental tests peak power (Ppeak) was increased, whereas V˙O2peak was unaltered. Prolonged time-to-exhaustion was found in endurance tests with 65 and 80% Pmax at INT and END. No changes in blood levels of lipid metabolites were detected. Training-induced decreases of hematocrit indicate hypervolemia. A shift from slow MHCI/ÎČ to fast MHCIIa mRNA expression occurred after the first and second training set. The mRNA expression of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), a master regulator of oxidative energy metabolism, decreased after the second training set. In agreement, a significant decrease was also found for citrate synthase mRNA after the second training set, indicating reduced oxidative capacity. However, mRNA expression levels of glycolytic marker enzyme glyceraldehyde-3-phosphate dehydrogenase did not change after the first and second training set. HIHVT induced a nearly complete slow-to-fast fiber type transformation on the mRNA level, which, however, cannot account for the improvements of performance parameters. The latter might be explained by the well-known effects of hypervolemia on exercise performance

    Routine Design for Mechanical Engineering

    No full text
    COMIX (COnfiguration of MIXing machines) is a system that assists members of the sales department of EKATO in designing a mixing machine which fulfills the requirements of a customer. It is used to help the engineer design the requested machine and prepare an offer that’s to be submitted to the customer. COMIX integrates more traditional software techniques with explicit knowledge representation and constraint propagation. During the process of routine design, some design decisions have to be made with uncertainty. By including knowledge from process technology and company experience in the mechanical design, a sufficiently high degree of flexibility is achieved that the system can even assist in difficult design situations. The success of the system can be measured by the increase in quantity and quality of the submitted offers

    Local and systemic effects on blood lactate concentration during exercise with small and large muscle groups

    No full text
    To evaluate the relationship between lactate release and [lac]art and to investigate the influence of the catecholamines on the lactate release, 14 healthy men [age 25±3 (SE) year] were studied by superimposing cycle on forearm exercise, both at 65% of their maximal power reached in respective incremental tests. Handgrip exercise was performed for 30 min at 65% of peak power. In addition, between the tenth and the 22nd minute, cycling with the same intensity was superimposed. The increase in venous lactate concentration ([lac]ven) (rest: 1.3±0.4 mmol.l-1; 3rd min: 3.9±0.8 mmol.l-1) begins with the forearm exercise, whereas arterial lactate concentration ([lac]art) remains almost unchanged. Once cycling has been added to forearm exercise (COMB), [lac]art increases with a concomitant increase in [lac]ven (12th min: [lac]art, 3.2±1.3 mmol.l-1; [lac]ven, 5.7±2.2 mmol.l-1). A correlation between oxygen tension (PvO2) and [lac]ven cannot be detected. There is a significant correlation between [lac]art and norepinephrine ([NE]) (y=0.25x+1.2; r=0.815; p=0.01) but no correlation between lactate release and epinephrine ([EPI]) at moderate intensity. Our main conclusion is that lactate release from exercising muscles at moderate intensities is neither dependent on PvO2 nor on [EPI] in the blood
    corecore