326 research outputs found

    Journey of candidates who were unmatched in the Canadian Residency Matching Service (CaRMS): A phenomenological study

    Get PDF
    Background: Each year, a number of medical students are unmatched in the Canadian Residency Matching Service (CaRMs) match. There is little information on the experiences of unmatched candidates. This study seeks to explore the experiences of applicants who were unmatched in the first iteration of their CaRMS applications Methods: We interviewed 15 participants who were previously unmatched, using a semi-structured interview guide to ask them of their experiences on the following domains: the overall unmatched experience; circumstances leading to their unmatched status; resources employed; barriers experienced; recommendations; and, their eventual career outcomes. We independently identified major themes from field notes to code the data using a phenomenology approach. Results: Our participants universally reported negative emotions, concerns regarding privacy and confidentiality breaches, and stigma faced (real or perceived). Systemic challenges included: lack of information, pressures faced from undergraduate medical education, and logistical issues such as financial challenges, licensing and scheduling issues. The utility of peer support differed for individual participants, but all those who had support from other unmatched candidates felt that to be useful. Conclusions: Our participants reported significant challenges faced after being unmatched. Based on these experiences, we identified four major recommendations to support candidates through their unmatched journey

    Performance of the Ebel standard-setting method for the spring 2019 Royal College of Physicians and Surgeons of Canada internal medicine certification examination consisting of multiple-choice questions

    Get PDF
    Purpose This study aimed to assess the performance of the Ebel standard-setting method for the spring 2019 Royal College of Physicians and Surgeons of Canada internal medicine certification examination consisting of multiple-choice questions. Specifically, the following parameters were evaluated: inter-rater agreement, the correlations between Ebel scores and item facility indices, the impact of raters’ knowledge of correct answers on the Ebel score, and the effects of raters’ specialty on inter-rater agreement and Ebel scores. Methods Data were drawn from a Royal College of Physicians and Surgeons of Canada certification exam. The Ebel method was applied to 203 multiple-choice questions by 49 raters. Facility indices came from 194 candidates. We computed the Fleiss kappa and the Pearson correlations between Ebel scores and item facility indices. We investigated differences in the Ebel score according to whether correct answers were provided or not and differences between internists and other specialists using the t-test. Results The Fleiss kappa was below 0.15 for both facility and relevance. The correlation between Ebel scores and facility indices was low when correct answers were provided and negligible when they were not. The Ebel score was the same whether the correct answers were provided or not. Inter-rater agreement and Ebel scores were not significantly different between internists and other specialists. Conclusion Inter-rater agreement and correlations between item Ebel scores and facility indices were consistently low; furthermore, raters’ knowledge of the correct answers and raters’ specialty had no effect on Ebel scores in the present setting

    Multi-organ point-of-care ultrasound for COVID-19 (PoCUS4COVID): international expert consensus.

    Get PDF
    COVID-19 has caused great devastation in the past year. Multi-organ point-of-care ultrasound (PoCUS) including lung ultrasound (LUS) and focused cardiac ultrasound (FoCUS) as a clinical adjunct has played a significant role in triaging, diagnosis and medical management of COVID-19 patients. The expert panel from 27 countries and 6 continents with considerable experience of direct application of PoCUS on COVID-19 patients presents evidence-based consensus using GRADE methodology for the quality of evidence and an expedited, modified-Delphi process for the strength of expert consensus. The use of ultrasound is suggested in many clinical situations related to respiratory, cardiovascular and thromboembolic aspects of COVID-19, comparing well with other imaging modalities. The limitations due to insufficient data are highlighted as opportunities for future research.post-print2.282 K

    In silico assessment of potential druggable pockets on the surface of α1-Antitrypsin conformers

    Get PDF
    The search for druggable pockets on the surface of a protein is often performed on a single conformer, treated as a rigid body. Transient druggable pockets may be missed in this approach. Here, we describe a methodology for systematic in silico analysis of surface clefts across multiple conformers of the metastable protein α1-antitrypsin (A1AT). Pathological mutations disturb the conformational landscape of A1AT, triggering polymerisation that leads to emphysema and hepatic cirrhosis. Computational screens for small molecule inhibitors of polymerisation have generally focused on one major druggable site visible in all crystal structures of native A1AT. In an alternative approach, we scan all surface clefts observed in crystal structures of A1AT and in 100 computationally produced conformers, mimicking the native solution ensemble. We assess the persistence, variability and druggability of these pockets. Finally, we employ molecular docking using publicly available libraries of small molecules to explore scaffold preferences for each site. Our approach identifies a number of novel target sites for drug design. In particular one transient site shows favourable characteristics for druggability due to high enclosure and hydrophobicity. Hits against this and other druggable sites achieve docking scores corresponding to a Kd in the µM–nM range, comparing favourably with a recently identified promising lead. Preliminary ThermoFluor studies support the docking predictions. In conclusion, our strategy shows considerable promise compared with the conventional single pocket/single conformer approach to in silico screening. Our best-scoring ligands warrant further experimental investigation

    Radiosensitizing potential of the selective cyclooygenase-2 (COX-2) inhibitor meloxicam on human glioma cells

    Get PDF
    The COX-2 protein is frequently overexpressed in human malignant gliomas. This expression has been associated with their aggressive growth characteristics and poor prognosis for patients. Targeting the COX-2 pathway might improve glioma therapy. In this study, the effects of the selective COX-2 inhibitor meloxicam alone and in combination with irradiation were investigated on human glioma cells in vitro. A panel of three glioma cell lines (D384, U87 and U251) was used in the experiments from which U87 cells expressed constitutive COX-2. The response to meloxicam and irradiation (dose-range of 0–6 Gy) was determined by the clonogenic assay, cell proliferation was evaluated by growth analysis and cell cycle distribution by FACS. 24–72 h exposure to 250–750 μM meloxicam resulted in a time and dose dependent growth inhibition with an almost complete inhibition after 24 h for all cell lines. Exposure to 750 μM meloxicam for 24 h increased the fraction of cells in the radiosensitive G2/M cell cycle phase in D384 (18–27%) and U251 (17–41%) cells. 750 μM meloxicam resulted in radiosensitization of D384 (DMF:2.19) and U87 (DMF:1.25) cells, but not U251 cells (DMF:1.08). The selective COX-2 inhibitor meloxicam exerted COX-2 independent growth inhibition and radiosensitization of human glioma cells

    Formyl Peptide Receptor as a Novel Therapeutic Target for Anxiety-Related Disorders

    Get PDF
    Formyl peptide receptors (FPR) belong to a family of sensors of the immune system that detect microbe-associated molecules and inform various cellular and sensorial mechanisms to the presence of pathogens in the host. Here we demonstrate that Fpr2/3-deficient mice show a distinct profile of behaviour characterised by reduced anxiety in the marble burying and light-dark box paradigms, increased exploratory behaviour in an open-field, together with superior performance on a novel object recognition test. Pharmacological blockade with a formyl peptide receptor antagonist, Boc2, in wild type mice reproduced most of the behavioural changes observed in the Fpr2/3(-/-) mice, including a significant improvement in novel object discrimination and reduced anxiety in a light/dark shuttle test. These effects were associated with reduced FPR signalling in the gut as shown by the significant reduction in the levels of p-p38. Collectively, these findings suggest that homeostatic FPR signalling exerts a modulatory effect on anxiety-like behaviours. These findings thus suggest that therapies targeting FPRs may be a novel approach to ameliorate behavioural abnormalities present in neuropsychiatric disorders at the cognitive-emotional interface

    Multi-organ point-of-care ultrasound for COVID-19 (PoCUS4COVID): international expert consensus

    Full text link
    COVID-19 has caused great devastation in the past year. Multi-organ point-of-care ultrasound (PoCUS) including lung ultrasound (LUS) and focused cardiac ultrasound (FoCUS) as a clinical adjunct has played a significant role in triaging, diagnosis and medical management of COVID-19 patients. The expert panel from 27 countries and 6 continents with considerable experience of direct application of PoCUS on COVID-19 patients presents evidence-based consensus using GRADE methodology for the quality of evidence and an expedited, modified-Delphi process for the strength of expert consensus. The use of ultrasound is suggested in many clinical situations related to respiratory, cardiovascular and thromboembolic aspects of COVID-19, comparing well with other imaging modalities. The limitations due to insufficient data are highlighted as opportunities for future research

    Differential Expression of Melanopsin Isoforms Opn4L and Opn4S during Postnatal Development of the Mouse Retina

    Get PDF
    Photosensitive retinal ganglion cells (pRGCs) respond to light from birth and represent the earliest known light detection system to develop in the mouse retina. A number of morphologically and functionally distinct subtypes of pRGCs have been described in the adult retina, and have been linked to different physiological roles. We have previously identified two distinct isoforms of mouse melanopsin, Opn4L and Opn4S, which are generated by alternate splicing of the Opn4 locus. These isoforms are differentially expressed in pRGC subtypes of the adult mouse retina, with both Opn4L and Opn4S detected in M1 type pRGCs, and only Opn4L detected in M2 type pRGCs. Here we investigate the developmental expression of Opn4L and Opn4S and show a differential profile of expression during postnatal development. Opn4S mRNA is detected at relatively constant levels throughout postnatal development, with levels of Opn4S protein showing a marked increase between P0 and P3, and then increasing progressively over time until adult levels are reached by P10. By contrast, levels of Opn4L mRNA and protein are low at birth and show a marked increase at P14 and P30 compared to earlier time points. We suggest that these differing profiles of expression are associated with the functional maturation of M1 and M2 subtypes of pRGCs. Based upon our data, Opn4S expressing M1 type pRGCs mature first and are the dominant pRGC subtype in the neonate retina, whereas increased expression of Opn4L and the maturation of M2 type pRGCs occurs later, between P10 and P14, at a similar time to the maturation of rod and cone photoreceptors. We suggest that the distinct functions associated with these cell types will develop at different times during postnatal development

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    High Expression of Wee1 Is Associated with Poor Disease-Free Survival in Malignant Melanoma: Potential for Targeted Therapy

    Get PDF
    Notoriously resistant malignant melanoma is one of the most increasing forms of cancer worldwide; there is thus a precarious need for new treatment options. The Wee1 kinase is a major regulator of the G2/M checkpoint, and halts the cell cycle by adding a negative phosphorylation on CDK1 (Tyr15). Additionally, Wee1 has a function in safeguarding the genome integrity during DNA synthesis. To assess the role of Wee1 in development and progression of malignant melanoma we examined its expression in a panel of paraffin-embedded patient derived tissue of benign nevi and primary- and metastatic melanomas, as well as in agarose-embedded cultured melanocytes. We found that Wee1 expression increased in the direction of malignancy, and showed a strong, positive correlation with known biomarkers involved in cell cycle regulation: Cyclin A (p<0.0001), Ki67 (p<0.0001), Cyclin D3 (p = 0.001), p21Cip1/WAF1 (p = 0.003), p53 (p = 0.025). Furthermore, high Wee1 expression was associated with thicker primary tumors (p = 0.001), ulceration (p = 0.005) and poor disease-free survival (p = 0.008). Transfections using siWee1 in metastatic melanoma cell lines; WM239WTp53, WM45.1MUTp53 and LOXWTp53, further support our hypothesis of a tumor promoting role of Wee1 in melanomas. Whereas no effect was observed in LOX cells, transfection with siWee1 led to accumulation of cells in G1/S and S phase of the cell cycle in WM239 and WM45.1 cells, respectively. Both latter cell lines displayed DNA damage and induction of apoptosis, in the absence of Wee1, indicating that the effect of silencing Wee1 may not be solely dependent of the p53 status of the cells. Together these results reveal the importance of Wee1 as a prognostic biomarker in melanomas, and indicate a potential role for targeted therapy, alone or in combination with other agents
    • …
    corecore