40 research outputs found
Results of a single-arm pilot study of 32P microparticles in unresectable locally advanced pancreatic adenocarcinoma with gemcitabine/nab-paclitaxel or FOLFIRINOX chemotherapy.
BACKGROUND: Unresectable locally advanced pancreatic cancer (LAPC) is generally managed with chemotherapy or chemoradiotherapy, but prognosis is poor with a median survival of âŒ13 months (or up to 19 months in some studies). We assessed a novel brachytherapy device, using phosphorous-32 (32P) microparticles, combined with standard-of-care chemotherapy. PATIENTS AND METHODS: In this international, multicentre, single-arm, open-label pilot study, adult patients with histologically or cytologically proven unresectable LAPC received 32P microparticles, via endoscopic ultrasound-guided fine-needle implantation, planned for week 4 of 5-fluorouracil, leucovorin, irinotecan and oxaliplatin (FOLFIRINOX) or gemcitabine/nab-paclitaxel chemotherapy, per investigator's choice. The primary endpoint was safety and tolerability measured using Common Terminology Criteria for Adverse Events version 4.0. The lead efficacy endpoint was local disease control rate at 16 weeks. RESULTS: Fifty patients were enrolled and received chemotherapy [intention-to-treat (ITT) population]. Forty-two patients received 32P microparticle implantation [per protocol (PP) population]. A total of 1102 treatment-emergent adverse events (TEAEs) were reported in the ITT/safety population (956 PP), of which 167 (139 PP) were grade â„3. In the PP population, 41 TEAEs in 16 (38.1%) patients were possibly or probably related to 32P microparticles or implantation procedure, including 8 grade â„3 in 3 (7.1%) patients, compared with 609 TEAEs in 42 (100%) patients attributed to chemotherapy, including 67 grade â„3 in 28 patients (66.7%). The local disease control rate at 16 weeks was 82.0% (95% confidence interval: 68.6% to 90.9%) (ITT) and 90.5% (95% confidence interval: 77.4% to 97.3%) (PP). Tumour volume, carbohydrate antigen 19-9 levels, and metabolic tumour response at week 12 improved significantly. Ten patients (20.0% ITT; 23.8% PP) had surgical resection and median overall survival was 15.2 and 15.5 months for ITT and PP populations, respectively. CONCLUSIONS: Endoscopic ultrasound-guided 32P microparticle implantation has an acceptable safety profile. This study also suggests clinically relevant benefits of combining 32P microparticles with standard-of-care systemic chemotherapy for patients with unresectable LAPC
Interpretation of chronic pain clinical trial outcomes: IMMPACT recommended considerations
Interpreting randomized clinical trials (RCTs) is crucial to making decisions regarding the use of analgesic treatments in clinical practice. In this article, we report on an Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials (IMMPACT) consensus meeting organized by the Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks (ACTTION), the purpose of which was to recommend approaches that facilitate interpretation of analgesic RCTs. We review issues to consider when drawing conclusions from RCTs, as well as common methods for reporting RCT results and the limitations of each method. These issues include the type of trial, study design, statistical analysis methods, magnitude of the estimated beneficial and harmful effects and associated precision, availability of alternative treatments and their benefit-risk profile, clinical importance of the change from baseline both within and between groups, presentation of the outcome data, and the limitations of the approaches used
Streptozotocin, Type I Diabetes Severity and Bone
As many as 50% of adults with type I (T1) diabetes exhibit bone loss and are at increased risk for fractures. Therapeutic development to prevent bone loss and/or restore lost bone in T1 diabetic patients requires knowledge of the molecular mechanisms accounting for the bone pathology. Because cell culture models alone cannot fully address the systemic/metabolic complexity of T1 diabetes, animal models are critical. A variety of models exist including spontaneous and pharmacologically induced T1 diabetic rodents. In this paper, we discuss the streptozotocin (STZ)-induced T1 diabetic mouse model and examine dose-dependent effects on disease severity and bone. Five daily injections of either 40 or 60 mg/kg STZ induce bone pathologies similar to spontaneously diabetic mouse and rat models and to human T1 diabetic bone pathology. Specifically, bone volume, mineral apposition rate, and osteocalcin serum and tibia messenger RNA levels are decreased. In contrast, bone marrow adiposity and aP2 expression are increased with either dose. However, high-dose STZ caused a more rapid elevation of blood glucose levels and a greater magnitude of change in body mass, fat pad mass, and bone gene expression (osteocalcin, aP2). An increase in cathepsin K and in the ratio of RANKL/OPG was noted in high-dose STZ mice, suggesting the possibility that severe diabetes could increase osteoclast activity, something not seen with lower doses. This may contribute to some of the disparity between existing studies regarding the role of osteoclasts in diabetic bone pathology. Examination of kidney and liver toxicity indicate that the high STZ dose causes some liver inflammation. In summary, the multiple low-dose STZ mouse model exhibits a similar bone phenotype to spontaneous models, has low toxicity, and serves as a useful tool for examining mechanisms of T1 diabetic bone loss
Nanofluids Research: Key Issues
Nanofluids are a new class of fluids engineered by dispersing nanometer-size structures (particles, fibers, tubes, droplets) in base fluids. The very essence of nanofluids research and development is to enhance fluid macroscopic and megascale properties such as thermal conductivity through manipulating microscopic physics (structures, properties and activities). Therefore, the success of nanofluid technology depends very much on how well we can address issues like effective means of microscale manipulation, interplays among physics at different scales and optimization of microscale physics for the optimal megascale properties. In this work, we take heat-conduction nanofluids as examples to review methodologies available to effectively tackle these key but difficult problems and identify the future research needs as well. The reviewed techniques include nanofluids synthesis through liquid-phase chemical reactions in continuous-flow microfluidic microreactors, scaling-up by the volume averaging and constructal design with the constructal theory. The identified areas of future research contain microfluidic nanofluids, thermal waves and constructal nanofluids
International Consensus Statement on Rhinology and Allergy: Rhinosinusitis
Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICARâRS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICARâRSâ2021 as well as updates to the original 140 topics. This executive summary consolidates the evidenceâbased findings of the document. Methods: ICARâRS presents over 180 topics in the forms of evidenceâbased reviews with recommendations (EBRRs), evidenceâbased reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICARâRSâ2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidenceâbased management algorithm is provided. Conclusion: This ICARâRSâ2021 executive summary provides a compilation of the evidenceâbased recommendations for medical and surgical treatment of the most common forms of RS
Source Determination of Nitrous Oxide Based on Nitrogen and Oxygen Isotope Tracing: Dealing with Oxygen exchange
Source determination of nitrous oxide (N2O) from soils has so far been complicated by methodological constraints: the frequently used 15N tracer method could not differentiate between pathways related to nitrification, that is, nitrifier nitrification (NN), nitrifier denitrification (ND), and nitrification-coupled denitrification (NCD). To overcome this problem, a dual isotope method using both 15N and 18O was proposed. However, O exchange between nitrogen oxides and water has been found to disturb such a method. We here explain in detail a novel dual isotope method that allows to quantify O exchange in denitrification and to differentiate N2O production from NN, ND, NCD, and fertilizer denitrification (FD). The method has already been applied to a range of soils with good success. Potential of and scope for further improvement of the method are discusse
FOCUS4: MAMS Trial Design in Action. Early Closure of FOCUS4-D (Pan-HER 1, 2 and 3 Inhibitor Versus Placebo) in Advanced Colorectal Cancer (aCRC) Patients, with Tumours Wildtype (WT) for KRAS, NRAS, bRAF and PIK3CA
Cancer predisposition syndromes are typically uncommon, monogenic, high-penetrance disorders. Despite their rarity, they have proven to be highly clinically relevant in directing cancer prevention strategies. As such, they are similar to an expanding class of low-frequency somatic mutations that are associated with a striking prognostic or predictive effect in the tumours in which they occur. This talk aims to highlight these commonalities, with particular reference to mutations in the proofreading domain of replicative DNA polymerases â the focus of work in my laboratory during the last few years