22 research outputs found
Pathophysiological classification of chronic rhinosinusitis
BACKGROUND: Recent consensus statements demonstrate the breadth of the chronic rhinosinusitis (CRS) differential diagnosis. However, the classification and mechanisms of different CRS phenotypes remains problematic. METHOD: Statistical patterns of subjective and objective findings were assessed by retrospective chart review. RESULTS: CRS patients were readily divided into those with (50/99) and without (49/99) polyposis. Aspirin sensitivity was limited to 17/50 polyp subjects. They had peripheral blood eosinophilia and small airways obstruction. Allergy skin tests were positive in 71% of the remaining polyp subjects. IgE was<10 IU/ml in 8/38 polyp and 20/45 nonpolyp subjects (p = 0.015, Fisher's Exact test). CT scans of the CRS without polyp group showed sinus mucosal thickening (probable glandular hypertrophy) in 28/49, and nasal osteomeatal disease in 21/49. Immunoglobulin isotype deficiencies were more prevalent in nonpolyp than polyp subjects (p < 0.05). CONCLUSION: CRS subjects were retrospectively classified in to 4 categories using the algorithm of (1) polyp vs. nonpolyp disease, (2) aspirin sensitivity in polyposis, and (3) sinus mucosal thickening vs. nasal osteomeatal disease (CT scan extent of disease) for nonpolypoid subjects. We propose that the pathogenic mechanisms responsible for polyposis, aspirin sensitivity, humoral immunodeficiency, glandular hypertrophy, eosinophilia and atopy are primary mechanisms underlying these CRS phenotypes. The influence of microbial disease and other factors remain to be examined in this framework. We predict that future clinical studies and treatment decisions will be more logical when these interactive disease mechanisms are used to stratify CRS patients
A chronic fatigue syndrome – related proteome in human cerebrospinal fluid
BACKGROUND: Chronic Fatigue Syndrome (CFS), Persian Gulf War Illness (PGI), and fibromyalgia are overlapping symptom complexes without objective markers or known pathophysiology. Neurological dysfunction is common. We assessed cerebrospinal fluid to find proteins that were differentially expressed in this CFS-spectrum of illnesses compared to control subjects. METHODS: Cerebrospinal fluid specimens from 10 CFS, 10 PGI, and 10 control subjects (50 μl/subject) were pooled into one sample per group (cohort 1). Cohort 2 of 12 control and 9 CFS subjects had their fluids (200 μl/subject) assessed individually. After trypsin digestion, peptides were analyzed by capillary chromatography, quadrupole-time-of-flight mass spectrometry, peptide sequencing, bioinformatic protein identification, and statistical analysis. RESULTS: Pooled CFS and PGI samples shared 20 proteins that were not detectable in the pooled control sample (cohort 1 CFS-related proteome). Multilogistic regression analysis (GLM) of cohort 2 detected 10 proteins that were shared by CFS individuals and the cohort 1 CFS-related proteome, but were not detected in control samples. Detection of ≥1 of a select set of 5 CFS-related proteins predicted CFS status with 80% concordance (logistic model). The proteins were α-1-macroglobulin, amyloid precursor-like protein 1, keratin 16, orosomucoid 2 and pigment epithelium-derived factor. Overall, 62 of 115 proteins were newly described. CONCLUSION: This pilot study detected an identical set of central nervous system, innate immune and amyloidogenic proteins in cerebrospinal fluids from two independent cohorts of subjects with overlapping CFS, PGI and fibromyalgia. Although syndrome names and definitions were different, the proteome and presumed pathological mechanism(s) may be shared
Concepts for the development of person-centred, digitally-enabled, Artificial Intelligence-assisted ARIA care pathways (ARIA 2024)
The traditional healthcare model is focused on diseases (medicine and natural science) and does not acknowledge patients' resources and abilities to be experts in their own life based on their lived experiences. Improving healthcare safety, quality and coordination, as well as quality of life, are important aims in the care of patients with chronic conditions. Person-centred care needs to ensure that people's values and preferences guide clinical decisions. This paper reviews current knowledge to develop (i) digital care pathways for rhinitis and asthma multimorbidity and (ii) digitally-enabled person-centred care (1). It combines all relevant research evidence, including the so-called real-world evidence, with the ultimate goal to develop digitally-enabled, patient-centred care. The paper includes (i) Allergic Rhinitis and its Impact on Asthma (ARIA), a two-decade journey, (ii) Grading of Recommendations, Assessment, Development and Evaluation (GRADE), the evidence-based model of guidelines in airway diseases, (iii) mHealth impact on airway diseases, (iv) from guidelines to digital care pathways, (v) embedding Planetary Health, (vi) novel classification of rhinitis and asthma, (vi) embedding real-life data with population-based studies, (vii) the ARIA-EAACI strategy for the management of airway diseases using digital biomarkers, (viii) Artificial Intelligence, (ix) the development of digitally-enabled ARIA Person-Centred Care and (x) the political agenda. The ultimate goal is to propose ARIA 2024 guidelines centred around the patient in order to make them more applicable and sustainable
Erratum to: Scaling up strategies of the chronic respiratory disease programme of the European Innovation Partnership on Active and Healthy Ageing (Action Plan B3: Area 5).
[This corrects the article DOI: 10.1186/s13601-016-0116-9.]
