268 research outputs found
Triggering antitumoural drug release and gene expression by magnetic hyperthermia
Magnetic nanoparticles (MNPs) are promising tools for a wide array of biomedical applications. One of their most outstanding properties is the ability to generate heat when exposed to alternating magnetic fields, usually exploited in magnetic hyperthermia therapy of cancer. In this contribution, we provide a critical review of the use of MNPs and magnetic hyperthermia as drug release and gene expression triggers for cancer therapy. Several strategies for the release of chemotherapeutic drugs from thermo-responsive matrices are discussed, providing representative examples of their application at different levels (from proof of concept to in vivo applications). The potential of magnetic hyperthermia to promote in situ expression of therapeutic genes using vectors that contain heat-responsive promoters is also reviewed in the context of cancer gene therapy
Composition of marsupial zona pellucida: a molecular and phylogenetic approach
©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
This document is the Accepted version of a Published Work that appeared in final form in Reproduction, Fertility and Development. To access the final edited and published work see https://doi.org/10.1071/RD16519The zona pellucida (ZP) is an extracellular matrix that surrounds mammalian oocytes. In eutherians it is
formed from three or four proteins (ZP1, ZP2, ZP3, ZP4). In the few marsupials that have been studied, however, only three
of these have been characterised (ZP2, ZP3, ZP4). Nevertheless, the composition in marsupials may be more complex,
since a duplication of the ZP3 gene was recently described in one species. The aim of this work was to elucidate the ZP
composition in marsupials and relate it to the evolution of the ZP gene family. For that, an in silico and molecular analysis
was undertaken, focusing on two South American species (gray short-tailed opossum and common opossum) and five
Australian species (brushtail possum, koala, Bennett’s wallaby, Tammar wallaby and Tasmanian devil). This analysis
identified the presence of ZP1 mRNA and mRNA from two or three paralogues of ZP3 in marsupials. Furthermore,
evidence for ZP1 and ZP4 pseudogenes in the South American subfamily Didelphinae and for ZP3 pseudogenes in two
marsupials is provided. In conclusion, two different composition models are proposed for marsupials: a model with four
proteins (ZP1, ZP2 and ZP3 (two copies)) for the South American species and a model with six proteins (ZP1, ZP2, ZP3
(three copies) and ZP4) for the Australasian specie
Functional proteomics outlines the complexity of breast cancer molecular subtypes
Breast cancer is a heterogeneous disease comprising a variety of entities with various genetic backgrounds. Estrogen receptor-positive, human epidermal growth factor receptor 2-negative tumors typically have a favorable outcome; however, some patients eventually relapse, which suggests some heterogeneity within this category. In the present study, we used proteomics and miRNA profiling techniques to characterize a set of 102 either estrogen receptor-positive (ER+)/progesterone receptorpositive (PR+) or triple-negative formalin-fixed, paraffin-embedded breast tumors. Protein expressionbased probabilistic graphical models and flux balance analyses revealed that some ER+/PR+ samples had a protein expression profile similar to that of triple-negative samples and had a clinical outcome similar to those with triple-negative disease. This probabilistic graphical model-based classification had prognostic value in patients with luminal A breast cancer. This prognostic information was independent of that provided by standard genomic tests for breast cancer, such as MammaPrint, OncoType Dx and the 8-gene Score
Understanding The Correlation Of Libs And Acoustic Measurements Of Rocks And Soils Found In The Traverse Of The Perseverance Rover Across The Jezero Crater, Mars
The SuperCam instrument of the NASA MARS 2020 Perseverance rover combines a suite of atomic and molecular spectroscopies intended for an extensive description of rocks, soils and minerals in the surroundings of the landing site of the mission – the Jezero crater. The microphone installed on the SuperCam instrument allows the acquisition of acoustic signals resulting from the expansion of laser-induced plasmas towards the atmosphere. Apart from being affected by the propagation characteristics of the Mars atmosphere, the acoustic signal has an additional component related to the properties of the target including surface morphology, hardness, deformation parameters, and elasticity, among others. This information is currently being investigated as a complementary resource for characterization of the ablated material and may well supplement the LIBS data gathered from coincident laser shots. This talk will present SuperCam acoustic data of rocks and minerals found in the traverse of the Perseverance rover and will discuss its correlation with LIBS spectra.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec
LIBS and Acoustic Measurements of Rocks and Regolith Found in the Traverse of the Perseverance Rover Across the Jezero Crater, Mars
The SuperCam instrument of the NASA MARS 2020 Perseverance rover combines a suite of atomic and molecular
spectroscopies intended for an extensive description of rocks, soils and minerals in the surroundings of the landing site
of the mission – the Jezero crater. The microphone installed on the SuperCam instrument allows the acquisition of acoustic
signals resulting from the expansion of laser-induced plasmas towards the atmosphere. Apart from being affected by the
propagation characteristics of the Mars atmosphere, the acoustic signal has an additional component related to the
properties of the target including surface morphology, hardness, deformation parameters, and elasticity, among others.
This information is currently being investigated as a complementary resource for characterization of the ablated material
and may well supplement the LIBS data gathered from coincident laser shots. This talk will present SuperCam acoustic
data of rocks and minerals found in the traverse of the Perseverance rover and will discuss its correlation with LIBS
spectra.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec
Challenges and Lessons Learned from fabrication, testing and analysis of eight MQXFA Low Beta Quadrupole magnets for HL-LHC
By the end of October 2022, the US HL-LHC Accelerator Upgrade Project (AUP)
had completed fabrication of ten MQXFA magnets and tested eight of them. The
MQXFA magnets are the low beta quadrupole magnets to be used in the Q1 and Q3
Inner Triplet elements of the High Luminosity LHC. This AUP effort is shared by
BNL, Fermilab, and LBNL, with strand verification tests at NHMFL. An important
step of the AUP QA plan is the testing of MQXFA magnets in a vertical cryostat
at BNL. The acceptance criteria that could be tested at BNL were all met by the
first four production magnets (MQXFA03-MQXFA06). Subsequently, two magnets
(MQXFA07 and MQXFA08) did not meet some criteria and were disassembled. Lessons
learned during the disassembly of MQXFA07 caused a revision to the assembly
specifications that were used for MQXFA10 and subsequent magnets. In this
paper, we present a summary of: 1) the fabrication and test data of all the
MQXFA magnets; 2) the analysis of MQXFA07/A08 test results with
characterization of the limiting mechanism; 3) the outcome of the
investigation, including the lessons learned during MQXFA07 disassembly; and 4)
the finite element analysis correlating observations with test performance
The sound of geological targets on Mars from the absolute intensity of laser-induced sparks shock waves
Inspection of geological material is one of the main goals of the Perseverance rover during its journey across the landscape of the Jezero crater in Mars. NASA's rover integrates SuperCam, an instrument capable of performing standoff characterization of samples using a variety of techniques. Among those tools, SuperCam can perform laser-induced breakdown spectroscopy (LIBS) studies to elucidate the chemical composition of the targets of interest. Data from optical spectroscopy can be supplemented by simultaneously-produced laser-produced plasma acoustics in order to expand the information acquired from the probed rocks thanks to the SuperCam's microphone (MIC) as it can be synchronized with the LIBS laser. Herein, we report cover results from LIBS and MIC during Perseverance's first 380 sols on the Martian surface. We study the correlation between both recorded signals, considering the main intrasample and environmental sources of variation for each technique, to understand their behavior and how they can be interpreted together towards complimenting LIBS with acoustics. We find that louder and more stable acoustic signals are recorded from rock with compact surfaces, i.e., low presence loose particulate material, and harder mineral phases in their composition. Reported results constitute the first description of the evolution of the intensity in the time domain of shockwaves from laser-produced plasmas on geological targets recorded in Mars. These signals are expected contain physicochemical signatures pertaining to the inspected sampling positions. As the dependence of the acoustic signal recorded on the sample composition, provided by LIBS, is unveiled, the sound from sparks become a powerful tool for the identification of mineral phases with similar optical emission spectra.Many people helped with this project in addition to the co-authors, including hardware and operation teams, and we are most grateful for their support. This project was supported in the USA by NASA’s Mars Exploration Program and in France is conducted under the authority of CNES. Research funded by projects UMA18-FEDERJA-272 from Junta de Andalucía and PID2020-119185GB-I00 from Ministerio de Ciencia e Innovacion, of Spain. P.P. is grateful to the European Union’s Next Generation EU (NGEU) plan and the Spanish Ministerio de Universidades for his Margarita Salas fellowship under the program ′′Ayudas para la Recualificacion del Sistema Universitario Español′′. RCW was funded by JPL contract 1681089. A.U was funded by NASA Mars 2020 Participating Scientist program 80NSSC21K0330.
Funding for open access charge: Universidad de Málaga / CBU
Health Services Utilization, Work Absenteeism and Costs of Pandemic Influenza A (H1N1) 2009 in Spain: A Multicenter-Longitudinal Study
Background: The aim of this study was to estimate healthcare resource utilization, work absenteeism and cost per patient with pandemic influenza (H1N1)2009, from its beginning to March 2010, in Spain. We also estimated the economic impact on healthcare services. Methods and Findings: Longitudinal, descriptive,multicenter study of in- and outpatients with confirmed diagnosis of influenza A (H1N1) in Spain. Temporal distribution of cases was comparable to that in Spain. Information of healthcare and social resources used from one week before admission (inpatient) or index-medical visit (outpatient) until recovery was gathered. Unit cost was imputed to utilization frequency for the monetary valuation of use. Mean cost per patient was calculated. A sensitivity analysis was conducted, and variables correlated with cost per patient were identified. Economic impact on the healthcare system was estimated using healthcare costs per patient and both, the reported number of confirmed and clinical cases in Spain. 172 inpatients and 224 outpatients were included. Less than 10% were over 65 years old and more than 50% had previous comorbidities. 12.8% of inpatients were admitted to the Intensive Care Unit. Mean length of hospital stay of patients not requiring critical care was 5 days (SD =4.4). All working-inpatients and 91.7% working-outpatients went on sick leave. On average, work absenteeism was 30.5 days (SD=20.7) for the first ones and 9 days (SD= 6.3) for the latest. Caregivers of 21.7% of inpatients and 8.5% of outpatients also had work absenteeism during 10.7 and 4.1 days on average respectively. Mean cost was J6,236/inpatient (CI95%=1,384-14,623) and J940/outpatient (CI95% =66-3,064). The healthcare economic burden of patients with confirmed influenza was J144,773,577 (IC95% 13,753,043-383,467,535). More than 86% of expenditures were a result of outpatients" utilization. Conclusion: Cost per H1N1-patient did not defer much from seasonal influenza estimates. Hospitalizations and work absenteeism represented the highest cost per patient
The biogeochemical impact of glacial meltwater from Southwest Greenland
Biogeochemical cycling in high-latitude regions has a disproportionate impact on global nutrient budgets. Here, we introduce a holistic, multi-disciplinary framework for elucidating the influence of glacial meltwaters, shelf currents, and biological production on biogeochemical cycling in high-latitude continental margins, with a focus on the silica cycle. Our findings highlight the impact of significant glacial discharge on nutrient supply to shelf and slope waters, as well as surface and benthic production in these regions, over a range of timescales from days to thousands of years. Whilst biological uptake in fjords and strong diatom activity in coastal waters maintains low dissolved silicon concentrations in surface waters, we find important but spatially heterogeneous additions of particulates into the system, which are transported rapidly away from the shore. We expect the glacially-derived particles – together with biogenic silica tests – to be cycled rapidly through shallow sediments, resulting in a strong benthic flux of dissolved silicon. Entrainment of this benthic silicon into boundary currents may supply an important source of this key nutrient into the Labrador Sea, and is also likely to recirculate back into the deep fjords inshore. This study illustrates how geochemical and oceanographic analyses can be used together to probe further into modern nutrient cycling in this region, as well as the palaeoclimatological approaches to investigating changes in glacial meltwater discharge through time, especially during periods of rapid climatic change in the Late Quaternary
- …