7,935 research outputs found
MRSA eradication of newly acquired lower respiratory tract infection in cystic fibrosis
UK cystic fibrosis (CF) guidelines recommend eradication of methicillin-resistant Staphylococcus aureus (MRSA) when cultured from respiratory samples. As there is no clear consensus as to which eradication regimen is most effective, we determined the efficacy of eradication regimens used in our CF centre and long-term clinical outcome. All new MRSA positive sputum cultures (n=37) that occurred between 2000 and 2014 were reviewed. Eradication regimen characteristics and clinical, microbiological and long-term outcome data were collected. Rifampicin plus fusidic acid was the most frequently used regimen (24 (65%) out of 37 patients), with an overall success rate of 79% (19 out of 24 patients). Eradication failure was more likely in patients with an additional MRSA-positive peripheral screening swab (p=0.03) and was associated with worse survival (p=0.04). Our results demonstrate the feasibility and clinical benefits of MRSA eradication. As peripheral colonisation was associated with lower eradication success, strategies combining systemic and topical treatments should be considered to optimise outcomes in CF patients
Cross-modal extinction in a boy with severely autistic behaviour and high verbal intelligence
Anecdotal reports from individuals with autism suggest a loss of awareness to stimuli from one modality in the presence of stimuli from another. Here we document such a case in a detailed study of T.M., a 13-year-old boy with autism in whom significant autistic behaviors are combined with an uneven IQ profile of superior verbal and low performance abilities. Although T.M.'s speech is often unintelligible and his behavior is dominated by motor stereotypies and impulsivity, he can communicate by typing or pointing independently within a letter board. A series of experiments using simple and highly salient visual, auditory, and tactile stimuli demonstrated a hierarchy of cross-modal extinction, in which auditory information extinguished other modalities at various levels of processing. T.M. also showed deficits in shifting and sustaining attention. These results provide evidence for mono-channel perception in autism and suggest a general pattern of winner-takes-all processing in which a stronger stimulus-d riven representation dominates behavior, extinguishing weaker representations
UBC-Nepal Expedition: Acute alterations in sympathetic nervous activity do not influence brachial artery endothelial function at sea-level and high-altitude.
Evidence indicates that increases in sympathetic nervous activity (SNA), and acclimatization to high-altitude (HA), may reduce endothelial function as assessed by brachial artery flow-mediated dilatation (FMD); however, it is unclear whether such changes in FMD are due to direct vascular constraint, or consequential altered hemodynamics (e.g. shear stress) associated with increased SNA as a consequence of exposure to HA. We hypothesized that: 1) at rest, SNA would be elevated and FMD would be reduced at HA compared to sea-level (SL); and 2) at SL and HA, FMD would be reduced when SNA was acutely increased, and elevated when SNA was acutely decreased. Using a novel, randomized experimental design, brachial artery FMD was assessed at SL (344m) and HA (5050m) in 14 participants during mild lower-body negative pressure (LBNP; -10 mmHg) and lower-body positive pressure (LBPP; +10 mmHg). Blood pressure (finger photoplethysmography), heart rate (electrodcardiogram), oxygen saturation (pulse oximetry), and brachial artery blood flow and shear rate (Duplex ultrasound) were recorded during LBNP, control, and LBPP trials. Muscle SNA was recorded (via microneurography) in a subset of participants (n=5). Our findings were: 1) at rest, SNA was elevated (P<0.01), and absolute FMD was reduced (P=0.024), but relative FMD remained unaltered (P=0.061), at HA compared to SL, and 2) despite significantly altering SNA with LBNP (+60.3±25.5%) and LBPP (-37.2±12.7%) (P<0.01), FMD was unaltered at SL (P=0.448), and HA (P=0.537). These data indicate that acute and mild changes in SNA do not directly influence brachial artery FMD at SL or HA
Seeing Tree Structure from Vibration
Humans recognize object structure from both their appearance and motion;
often, motion helps to resolve ambiguities in object structure that arise when
we observe object appearance only. There are particular scenarios, however,
where neither appearance nor spatial-temporal motion signals are informative:
occluding twigs may look connected and have almost identical movements, though
they belong to different, possibly disconnected branches. We propose to tackle
this problem through spectrum analysis of motion signals, because vibrations of
disconnected branches, though visually similar, often have distinctive natural
frequencies. We propose a novel formulation of tree structure based on a
physics-based link model, and validate its effectiveness by theoretical
analysis, numerical simulation, and empirical experiments. With this
formulation, we use nonparametric Bayesian inference to reconstruct tree
structure from both spectral vibration signals and appearance cues. Our model
performs well in recognizing hierarchical tree structure from real-world videos
of trees and vessels.Comment: ECCV 2018. The first two authors contributed equally to this work.
Project page: http://tree.csail.mit.edu
Nel positively regulates the genesis of retinal ganglion cells by promoting their differentiation and survival during development
Peer reviewedPublisher PD
Evidence for a fractional quantum Hall state with anisotropic longitudinal transport
At high magnetic fields, where the Fermi level lies in the N=0 lowest Landau
level (LL), a clean two-dimensional electron system (2DES) exhibits numerous
incompressible liquid phases which display the fractional quantized Hall effect
(FQHE) (Das Sarma and Pinczuk, 1997). These liquid phases do not break
rotational symmetry, exhibiting resistivities which are isotropic in the plane.
In contrast, at lower fields, when the Fermi level lies in the third
and several higher LLs, the 2DES displays a distinctly different class of
collective states. In particular, near half filling of these high LLs the 2DES
exhibits a strongly anisotropic longitudinal resistance at low temperatures
(Lilly et al., 1999; Du et al., 1999). These "stripe" phases, which do not
exhibit the quantized Hall effect, resemble nematic liquid crystals, possessing
broken rotational symmetry and orientational order (Koulakov et al., 1996;
Fogler et al., 1996; Moessner and Chalker, 1996; Fradkin and Kivelson, 1999;
Fradkin et al, 2010). Here we report a surprising new observation: An
electronic configuration in the N=1 second LL whose resistivity tensor
simultaneously displays a robust fractionally quantized Hall plateau and a
strongly anisotropic longitudinal resistance resembling that of the stripe
phases.Comment: Nature Physics, (2011
Decreasing intensity of open-ocean convection in the Greenland and Iceland seas
The air–sea transfer of heat and fresh water plays a critical role in the global climate system. This is particularly true for the Greenland and Iceland seas, where these fluxes drive ocean convection that contributes to Denmark Strait overflow water, the densest component of the lower limb of the Atlantic Meridional Overturning Circulation (AMOC). Here we show that the wintertime retreat of sea ice in the region, combined with different rates of warming for the atmosphere and sea surface of the Greenland and Iceland seas, has resulted in statistically significant reductions of approximately 20% in the magnitude of the winter air–sea heat fluxes since 1979. We also show that modes of climate variability other than the North Atlantic Oscillation (NAO) are required to fully characterize the regional air–sea interaction. Mixed-layer model simulations imply that further decreases in atmospheric forcing will exceed a threshold for the Greenland Sea whereby convection will become depth limited, reducing the ventilation of mid-depth waters in the Nordic seas. In the Iceland Sea, further reductions have the potential to decrease the supply of the densest overflow waters to the AMOC
UBC-Nepal Expedition: Acute alterations in sympathetic nervous activity do not influence brachial artery endothelial function at sea-level and high-altitude.
Evidence indicates that increases in sympathetic nervous activity (SNA), and acclimatization to high-altitude (HA), may reduce endothelial function as assessed by brachial artery flow-mediated dilatation (FMD); however, it is unclear whether such changes in FMD are due to direct vascular constraint, or consequential altered hemodynamics (e.g. shear stress) associated with increased SNA as a consequence of exposure to HA. We hypothesized that: 1) at rest, SNA would be elevated and FMD would be reduced at HA compared to sea-level (SL); and 2) at SL and HA, FMD would be reduced when SNA was acutely increased, and elevated when SNA was acutely decreased. Using a novel, randomized experimental design, brachial artery FMD was assessed at SL (344m) and HA (5050m) in 14 participants during mild lower-body negative pressure (LBNP; -10 mmHg) and lower-body positive pressure (LBPP; +10 mmHg). Blood pressure (finger photoplethysmography), heart rate (electrodcardiogram), oxygen saturation (pulse oximetry), and brachial artery blood flow and shear rate (Duplex ultrasound) were recorded during LBNP, control, and LBPP trials. Muscle SNA was recorded (via microneurography) in a subset of participants (n=5). Our findings were: 1) at rest, SNA was elevated (P<0.01), and absolute FMD was reduced (P=0.024), but relative FMD remained unaltered (P=0.061), at HA compared to SL, and 2) despite significantly altering SNA with LBNP (+60.3±25.5%) and LBPP (-37.2±12.7%) (P<0.01), FMD was unaltered at SL (P=0.448), and HA (P=0.537). These data indicate that acute and mild changes in SNA do not directly influence brachial artery FMD at SL or HA
Effect of maternal panic disorder on mother-child interaction and relation to child anxiety and child self-efficacy
To determine whether mothers with panic disorder with or without agoraphobia interacted differently with their children than normal control mothers, 86 mothers and their adolescents (aged between 13 and 23 years) were observed during a structured play situation. Maternal as well as adolescent anxiety status was assessed according to a structured diagnostic interview. Results showed that mothers with panic disorder/agoraphobia showed more verbal control, were more criticizing and less sensitive during mother-child interaction than mothers without current mental disorders. Moreover, more conflicts were observed between mother and child dyadic interactions when the mother suffered from panic disorder. The comparison of parenting behaviors among anxious and non-anxious children did not reveal any significant differences. These findings support an association between parental over-control and rejection and maternal but not child anxiety and suggest that particularly mother anxiety status is an important determinant of parenting behavior. Finally, an association was found between children’s perceived self-efficacy, parental control and child anxiety symptoms
Transgenic Rescue of the LARGEmyd Mouse: A LARGE Therapeutic Window?
LARGE is a glycosyltransferase involved in glycosylation of α-dystroglycan (α-DG). Absence of this protein in the LARGEmyd mouse results in α-DG hypoglycosylation, and is associated with central nervous system abnormalities and progressive muscular dystrophy. Up-regulation of LARGE has previously been proposed as a therapy for the secondary dystroglycanopathies: overexpression in cells compensates for defects in multiple dystroglycanopathy genes. Counterintuitively, LARGE overexpression in an FKRP-deficient mouse exacerbates pathology, suggesting that modulation of α-DG glycosylation requires further investigation. Here we demonstrate that transgenic expression of human LARGE (LARGE-LV5) in the LARGEmyd mouse restores α-DG glycosylation (with marked hyperglycosylation in muscle) and that this corrects both the muscle pathology and brain architecture. By quantitative analyses of LARGE transcripts we also here show that levels of transgenic and endogenous LARGE in the brains of transgenic animals are comparable, but that the transgene is markedly overexpressed in heart and particularly skeletal muscle (20–100 fold over endogenous). Our data suggest LARGE overexpression may only be deleterious under a forced regenerative context, such as that resulting from a reduction in FKRP: in the absence of such a defect we show that systemic expression of LARGE can indeed act therapeutically, and that even dramatic LARGE overexpression is well-tolerated in heart and skeletal muscle. Moreover, correction of LARGEmyd brain pathology with only moderate, near-physiological LARGE expression suggests a generous therapeutic window
- …
