470 research outputs found
Testing matter effects in propagation of atmospheric and long-baseline neutrinos
We quantify our current knowledge of the size and flavor structure of the
matter effects in the evolution of atmospheric and long-baseline neutrinos
based solely on the analysis of the corresponding neutrino data. To this aim we
generalize the matter potential of the Standard Model by rescaling its
strength, rotating it away from the e-e sector, and rephasing it with respect
to the vacuum term. This phenomenological parametrization can be easily
translated in terms of non-standard neutrino interactions in matter. We show
that in the most general case, the strength of the potential cannot be
determined solely by atmospheric and long-baseline data. However its flavor
composition is very much constrained and the present determination of the
neutrino masses and mixing is robust under its presence. We also present an
update of the constraints arising from this analysis in the particular case in
which no potential is present in the e-mu and e-tau sectors. Finally we
quantify to what degree in this scenario it is possible to alleviate the
tension between the oscillation results for neutrinos and antineutrinos in the
MINOS experiment and show the relevance of the high energy part of the spectrum
measured at MINOS.Comment: PDFLaTeX file using JHEP3 class, 25 pages, 7 figures included.
Accepted for publication in JHE
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Integrating isotopes and documentary evidence : dietary patterns in a late medieval and early modern mining community, Sweden
We would like to thank the Archaeological Research Laboratory, Stockholm University, Sweden and the Tandem Laboratory (Ångström Laboratory), Uppsala University, Sweden, for undertaking the analyses of stable nitrogen and carbon isotopes in both human and animal collagen samples. Also, thanks to Elin Ahlin Sundman for providing the δ13C and δ15N values for animal references from Västerås. This research (Bäckström’s PhD employment at Lund University, Sweden) was supported by the Berit Wallenberg Foundation (BWS 2010.0176) and Jakob and Johan Söderberg’s foundation. The ‘Sala project’ (excavations and analyses) has been funded by Riksens Clenodium, Jernkontoret, Birgit and Gad Rausing’s Foundation, SAU’s Research Foundation, the Royal Physiographic Society of Lund, Berit Wallenbergs Foundation, Åke Wibergs Foundation, Lars Hiertas Memory, Helge Ax:son Johnson’s Foundation and The Royal Swedish Academy of Sciences.Peer reviewedPublisher PD
Search for Sterile Neutrinos Mixing with Muon Neutrinos in MINOS
We report results of a search for oscillations involving a light sterile neutrino over distances of 1.04 and 735 km in a νμ-dominated beam with a peak energy of 3 GeV. The data, from an exposure of 10.56 × 10^20 protons on target, are analyzed using a phenomenological model with one sterile neutrino. We constrain the mixing parameters θ24 and Δm41^2 and set limits on parameters of the four-dimensional Pontecorvo-Maki- Nakagawa-Sakata matrix, |Uμ4|2 and |Uτ4|2, under the assumption that mixing between νe and νs is negligible (|Ue4|^2 = 0). No evidence for νμ → νs transitions is found and we set a world-leading limit on θ24 for values of Δm41^2 ≲ 1 eV^2
Probing non-standard interactions at Daya Bay
In this article we consider the presence of neutrino non-standard interactions (NSI) in the production and detection processes of reactor antineutrinos at the Daya Bay experiment. We report for the first time, the new constraints on the flavor non-universal and flavor universal charged-current NSI parameters, estimated using the currently released 621 days of Daya Bay data. New limits are placed assuming that the new physics effects are just inverse of each other in the production and detection processes. With this special choice of the NSI parameters, we observe a shift in the oscillation amplitude without distorting the L/E pattern of the oscillation probability. This shift in the depth of the oscillation dip can be caused by the NSI parameters as well as by theta(13), making it quite difficult to disentangle the NSI effects from the standard oscillations. We explore the correlations between the NSI parameters and theta(13) that may lead to significant deviations in the reported value of the reactor mixing angle with the help of iso-probability surface plots. Finally, we present the limits on electron, muon/tau, and flavor universal (FU) NSI couplings with and without considering the uncertainty in the normalization of the total event rates. Assuming a perfect knowledge of the event rates normalization, we find strong upper bounds similar to 0.1% for the electron and FU cases improving the present limits by one order of magnitude. However, for a conservative error of 5% in the total normalization, these constraints are relaxed by almost one order of magnitude
Measurement of the multiple-muon charge ratio in the MINOS Far Detector
The charge ratio, Rμ=Nμ+/Nμ−, for cosmogenic multiple-muon events observed at an underground depth of 2070 mwe has been measured using the magnetized MINOS Far Detector. The multiple-muon events, recorded nearly continuously from August 2003 until April 2012, comprise two independent data sets imaged with opposite magnetic field polarities, the comparison of which allows the systematic uncertainties of the measurement to be minimized. The multiple-muon charge ratio is determined to be Rμ=1.104±0.006(stat)+0.009−0.010(syst). This measurement complements previous determinations of single-muon and multiple-muon charge ratios at underground sites and serves to constrain models of cosmic-ray interactions at TeV energies
Parent-child interaction in children with autism spectrum disorder and their siblings : choosing a coding strategy
Measurement of single π0 production by coherent neutral-current ν Fe interactions in the MINOS Near Detector
Forward single π0 production by coherent neutral-current interactions, νA→νAπ0, is investigated using a 2.8×1020 protons-on-target exposure of the MINOS Near Detector. For single-shower topologies, the event distribution in production angle exhibits a clear excess above the estimated background at very forward angles for visible energy in the range 1-8 GeV. Cross sections are obtained for the detector medium comprised of 80% iron and 20% carbon nuclei with =48, the highest- target used to date in the study of this coherent reaction. The total cross section for coherent neutral-current single π0 production initiated by the νμ flux of the NuMI low-energy beam with mean (mode) Eν of 4.9 GeV (3.0 GeV), is 77.6±5.0(stat)-16.8+15.0(syst)×10-40 cm2 pernucleus. The results are in good agreement with predictions of the Berger-Sehgal model
Search for flavor-changing nonstandard neutrino interactions using nu(e) appearance in MINOS
We report new constraints on flavor-changing nonstandard neutrino interactions from the MINOS long-baseline experiment using νe and ¯νe appearance candidate events from predominantly νμ and ¯νμ beams. We used a statistical selection algorithm to separate νe candidates from background events, enabling an analysis of the combined MINOS neutrino and antineutrino data. We observe no deviations from standard neutrino mixing, and thus place constraints on the nonstandard interaction matter effect, |ϵeτ|, and phase, (δCP+δeτ), using a 30-bin likelihood fit
Precision measurement of the speed of propagation of neutrinos using the MINOS detectors
We report a two-detector measurement of the propagation speed of neutrinos over a baseline of 734 km. The measurement was made with the NuMI beam at Fermilab between the near and far MINOS detectors. The fractional difference between the neutrino speed and the speed of light is determined to be (v/c−1)=(1.0±1.1)×10−6, consistent with relativistic neutrinos
- …
