2,243 research outputs found

    Coherent Signal Amplification in Bistable Nanomechanical Oscillators by Stochastic Resonance

    Full text link
    Stochastic resonance is a counter-intuitive concept[1,2], ; the addition of noise to a noisy system induces coherent amplification of its response. First suggested as a mechanism for the cyclic recurrence of ice ages, stochastic resonance has been seen in a wide variety of macroscopic physical systems: bistable ring lasers[3], SQUIDs[4,5], magnetoelastic ribbons[6], and neurophysiological systems such as the receptors in crickets[7] and crayfish[8]. Although it is fundamentally important as a mechanism of coherent signal amplification, stochastic resonance is yet to be observed in nanoscale systems. Here we report the observation of stochastic resonance in bistable nanomechanical silicon oscillators, which can play an important role in the realization of controllable high-speed nanomechanical memory cells. Our nanomechanical systems were excited into a dynamic bistable state and modulated in order to induce controllable switching; the addition of white noise showed a marked amplification of the signal strength. Stochastic resonance in nanomechanical systems paves the way for exploring macroscopic quantum coherence and tunneling, and controlling nanoscale quantum systems for their eventual use as robust quantum logic devices.Comment: 18 pages, 4 figure

    Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule

    Get PDF
    N-methyl-D-aspartate receptors (NMDARs) mediate synaptic plasticity, and their dysfunction is implicated in multiple brain disorders. NMDARs can be allosterically modulated by numerous compounds, including endogenous neurosteroid pregnanolone sulfate. Here, we identify the molecular basis of the use-dependent and voltage-independent inhibitory effect of neurosteroids on NMDAR responses. The site of action is located at the extracellular vestibule of the receptor's ion channel pore and is accessible after receptor activation. Mutations in the extracellular vestibule in the SYTANLAAF motif disrupt the inhibitory effect of negatively charged steroids. In contrast, positively charged steroids inhibit mutated NMDAR responses in a voltage-dependent manner. These results, in combination with molecular modeling, characterize structure details of the open configuration of the NMDAR channel. Our results provide a unique opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with dysfunction of the glutamate system

    Protection against Divergent Influenza H1N1 Virus by a Centralized Influenza Hemagglutinin

    Get PDF
    Influenza poses a persistent worldwide threat to the human population. As evidenced by the 2009 H1N1 pandemic, current vaccine technologies are unable to respond rapidly to this constantly diverging pathogen. We tested the utility of adenovirus (Ad) vaccines expressing centralized consensus influenza antigens. Ad vaccines were produced within 2 months and protected against influenza in mice within 3 days of vaccination. Ad vaccines were able to protect at doses as low as 107 virus particles/kg indicating that approximately 1,000 human doses could be rapidly generated from standard Ad preparations. To generate broadly cross-reactive immune responses, centralized consensus antigens were constructed against H1 influenza and against H1 through H5 influenza. Twenty full-length H1 HA sequences representing the main branches of the H1 HA phylogenetic tree were used to create a synthetic centralized gene, HA1-con. HA1-con minimizes the degree of sequence dissimilarity between the vaccine and existing circulating viruses. The centralized H1 gene, HA1-con, induced stronger immune responses and better protection against mismatched virus challenges as compared to two wildtype H1 genes. HA1-con protected against three genetically diverse lethal influenza challenges. When mice were challenged with 1934 influenza A/PR/8/34, HA1-con protected 100% of mice while vaccine generated from 2009 A/TX/05/09 only protected 40%. Vaccination with 1934 A/PR/8/34 and 2009 A/TX/05/09 protected 60% and 20% against 1947 influenza A/FM/1/47, respectively, whereas 80% of mice vaccinated with HA1-con were protected. Notably, 80% of mice challenged with 2009 swine flu isolate A/California/4/09 were protected by HA1-con vaccination. These data show that HA1-con in Ad has potential as a rapid and universal vaccine for H1N1 influenza viruses

    Surface Aggregation of Urinary Proteins and Aspartic Acid-Rich Peptides on the Faces of Calcium Oxalate Monohydrate Investigated by In Situ Force Microscopy

    Get PDF
    The growth of calcium oxalate monohydrate in the presence of Tamm-Horsfall protein (THP), osteopontin, and the 27-residue synthetic peptides (DDDS)6DDD and (DDDG)6DDD (D = aspartic acid, S = serine, and G = glycine) was investigated via in situ atomic force microscopy. The results show that these four growth modulators create extensive deposits on the crystal faces. Depending on the modulator and crystal face, these deposits can occur as discrete aggregates, filamentary structures, or uniform coatings. These proteinaceous films can lead to either the inhibition of or an increase in the step speeds (with respect to the impurity-free system), depending on a range of factors that include peptide or protein concentration, supersaturation, and ionic strength. While THP and the linear peptides act, respectively, to exclusively increase and inhibit growth on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}(1ˉ01) \left( {\bar{1}01} \right) \end{document} face, both exhibit dual functionality on the (010) face, inhibiting growth at low supersaturation or high modulator concentration and accelerating growth at high supersaturation or low modulator concentration. Based on analyses of growth morphologies and dependencies of step speeds on supersaturation and protein or peptide concentration, we propose a picture of growth modulation that accounts for the observations in terms of the strength of binding to the surfaces and steps and the interplay of electrostatic and solvent-induced forces at the crystal surface

    Transplantation of canine olfactory ensheathing cells producing chondroitinase ABC promotes chondroitin sulphate proteoglycan digestion and axonal sprouting following spinal cord injury

    Get PDF
    Olfactory ensheathing cell (OEC) transplantation is a promising strategy for treating spinal cord injury (SCI), as has been demonstrated in experimental SCI models and naturally occurring SCI in dogs. However, the presence of chondroitin sulphate proteoglycans within the extracellular matrix of the glial scar can inhibit efficient axonal repair and limit the therapeutic potential of OECs. Here we have used lentiviral vectors to genetically modify canine OECs to continuously deliver mammalian chondroitinase ABC at the lesion site in order to degrade the inhibitory chondroitin sulphate proteoglycans in a rodent model of spinal cord injury. We demonstrate that these chondroitinase producing canine OECs survived at 4 weeks following transplantation into the spinal cord lesion and effectively digested chondroitin sulphate proteoglycans at the site of injury. There was evidence of sprouting within the corticospinal tract rostral to the lesion and an increase in the number of corticospinal axons caudal to the lesion, suggestive of axonal regeneration. Our results indicate that delivery of the chondroitinase enzyme can be achieved with the genetically modified OECs to increase axon growth following SCI. The combination of these two promising approaches is a potential strategy for promoting neural regeneration following SCI in veterinary practice and human patients

    Overview of the VA Quality Enhancement Research Initiative (QUERI) and QUERI theme articles: QUERI Series

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Continuing challenges to timely adoption of evidence-based clinical practices in healthcare have generated intense interest in the development and application of new implementation methods and frameworks. These challenges led the United States (U.S.) Department of Veterans Affairs (VA) to create the Quality Enhancement Research Initiative (QUERI) in the late 1990s. QUERI's purpose was to harness VA's health services research expertise and resources in an ongoing system-wide effort to improve the performance of the VA healthcare system and, thus, quality of care for veterans. QUERI in turn created a systematic means of involving VA researchers both in enhancing VA healthcare quality, by implementing evidence-based practices, and in contributing to the continuing development of implementation science.</p> <p>The efforts of VA researchers to improve healthcare delivery practices through QUERI and related initiatives are documented in a growing body of literature. The scientific frameworks and methodological approaches developed and employed by QUERI are less well described. A QUERI Series of articles in <it>Implementation Science </it>will illustrate many of these QUERI tools. This <it>Overview </it>article introduces both QUERI and the Series.</p> <p>Methods</p> <p>The <it>Overview </it>briefly explains the purpose and context of the QUERI Program. It then describes the following: the key operational structure of QUERI Centers, guiding frameworks designed to enhance implementation and related research, QUERI's progress and promise to date, and the Series' general content. QUERI's frameworks include a core set of steps for diagnosing and closing quality gaps and, simultaneously, advancing implementation science. Throughout the paper, the envisioned involvement and activities of VA researchers within QUERI Centers also are highlighted. The Series is then described, illustrating the use of QUERI frameworks and other tools designed to respond to implementation challenges.</p> <p>Conclusion</p> <p>QUERI's simultaneous pursuit of improvement and research goals within a large healthcare system may be unique. However, descriptions of this still-evolving effort, including its conceptual frameworks, methodological approaches, and enabling processes, should have applicability to implementation researchers in a range of health care settings. Thus, the <it>Series </it>is offered as a resource for other implementation research programs and researchers pursuing common goals in improving care and developing the field of implementation science.</p

    Enhancement Effects of Martentoxin on Glioma BK Channel and BK Channel (α+β1) Subtypes

    Get PDF
    BACKGROUND: BK channels are usually activated by membrane depolarization and cytoplasmic Ca(2+). Especially,the activity of BK channel (α+β4) can be modulated by martentoxin, a 37 residues peptide, with Ca(2+)-dependent manner. gBK channel (glioma BK channel) and BK channel (α+β1) possessed higher Ca(2+) sensitivity than other known BK channel subtypes. METHODOLOGY AND PRINCIPAL FINDINGS: The present study investigated the modulatory characteristics of martentoxin on these two BK channel subtypes by electrophysiological recordings, cell proliferation and Ca(2+) imaging. In the presence of cytoplasmic Ca(2+), martentoxin could enhance the activities of both gBK and BK channel (α+β1) subtypes in dose-dependent manner with EC(50) of 46.7 nM and 495 nM respectively, while not shift the steady-state activation of these channels. The enhancement ratio of martentoxin on gBK and BK channel (α+β1) was unrelated to the quantitative change of cytoplasmic Ca(2+) concentrations though the interaction between martentoxin and BK channel (α+β1) was accelerated under higher cytoplasmic Ca(2+). The selective BK pore blocker iberiotoxin could fully abolish the enhancement of these two BK subtypes induced by martentoxin, suggesting that the auxiliary β subunit might contribute to the docking for martentoxin. However, in the absence of cytoplasmic Ca(2+), the activity of gBK channel would be surprisingly inhibited by martentoxin while BK channel (α+β1) couldn't be affected by the toxin. CONCLUSIONS AND SIGNIFICANCE: Thus, the results shown here provide the novel evidence that martentoxin could increase the two Ca(2+)-hypersensitive BK channel subtypes activities in a new manner and indicate that β subunit of these BK channels plays a vital role in this enhancement by martentoxin

    FGF10 maintains distal lung bud epithelium and excessive signaling leads to progenitor state arrest, distalization, and goblet cell metaplasia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interaction with the surrounding mesenchyme is necessary for development of endodermal organs, and Fibroblast growth factors have recently emerged as mesenchymal-expressed morphogens that direct endodermal morphogenesis. The fibroblast growth factor 10 (<it>Fgf10</it>) null mouse is characterized by the absence of lung bud development. Previous studies have shown that this requirement for <it>Fgf10 </it>is due in part to its role as a chemotactic factor during branching morphogenesis. In other endodermal organs <it>Fgf10 </it>also plays a role in regulating differentiation.</p> <p>Results</p> <p>Through gain-of-function analysis, we here find that FGF10 inhibits differentiation of the lung epithelium and promotes distalization of the embryonic lung. Ectopic expression of FGF10 in the lung epithelium caused impaired lung development and perinatal lethality in a transgenic mouse model. Lung lobes were enlarged due to increased interlobular distance and hyperplasia of the airway epithelium. Differentiation of bronchial and alveolar cell lineages was inhibited. The transgenic epithelium consisted predominantly of proliferating progenitor-like cells expressing Pro-surfactant protein C, TTF1, PEA3 and Clusterin similarly to immature distal tip cells. Strikingly, goblet cells developed within this arrested epithelium leading to goblet cell hyperplasia.</p> <p>Conclusion</p> <p>We conclude that FGF10 inhibits terminal differentiation in the embryonic lung and maintains the distal epithelium, and that excessive levels of FGF10 leads to metaplastic differentiation of goblet cells similar to that seen in chronic inflammatory diseases.</p
    corecore