317 research outputs found

    Comparison of buccal and blood-derived canine DNA, either native or whole genome amplified, for array-based genome-wide association studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The availability of array-based genotyping platforms for single nucleotide polymorphisms (SNPs) for the canine genome has expanded the opportunities to undertake genome-wide association (GWA) studies to identify the genetic basis for <it>Mendelian </it>and complex traits. Whole blood as the source of high quality DNA is undisputed but often proves impractical for collection of the large numbers of samples necessary to discover the loci underlying complex traits. Further, many countries prohibit the collection of blood from dogs unless medically necessary thereby restricting access to critical control samples from healthy dogs. Alternate sources of DNA, typically from buccal cytobrush extractions, while convenient, have been suggested to have low yield and perform poorly in GWA. Yet buccal cytobrushes provide a cost-effective means of collecting DNA, are readily accepted by dog owners, and represent a large resource base in many canine genetics laboratories. To increase the DNA quantities, whole genome amplification (WGA) can be performed. Thus, the present study assessed the utility of buccal-derived DNA as well as whole genome amplification in comparison to blood samples for use on the most recent iteration of the canine HD SNP array (Illumina).</p> <p>Findings</p> <p>In both buccal and blood samples, whether whole genome amplified or not, 97% of the samples had SNP call rates in excess of 80% indicating that the vast majority of the SNPs would be suitable to perform association studies regardless of the DNA source. Similarly, there were no significant differences in marker intensity measurements between buccal and blood samples for copy number variations (CNV) analysis.</p> <p>Conclusions</p> <p>All DNA samples assayed, buccal or blood, native or whole genome amplified, are appropriate for use in array-based genome-wide association studies. The concordance between subsets of dogs for which both buccal and blood samples, or those samples whole genome amplified, was shown to average >99%. Thus, the two DNA sources were comparable in the generation of SNP genotypes and intensity values to estimate structural variation indicating the utility for the use of buccal cytobrush samples and the reliability of whole genome amplification for genome-wide association and CNV studies.</p

    Array-Based Whole-Genome Survey of Dog Saliva DNA Yields High Quality SNP Data

    Get PDF
    Background: Genome-wide association scans for genetic loci underlying both Mendelian and complex traits are increasingly common in canine genetics research. However, the demand for high-quality DNA for use on such platforms creates challenges for traditional blood sample ascertainment. Though the use of saliva as a means of collecting DNA is common in human studies, alternate means of DNA collection for canine research have instead been limited to buccal swabs, from which dog DNA is of insufficient quality and yield for use on most high-throughput array-based systems. We thus investigated an animal-based saliva collection method for ease of use and quality of DNA obtained and tested the performance of saliva-extracted canine DNA on genome-wide genotyping arrays. Methodology/Principal Findings: Overall, we found that saliva sample collection using this method was efficient. Extractions yielded high concentrations (,125 ng/ul) of high-quality DNA that performed equally well as blood-extracted DNA on the Illumina Infinium canine genotyping platform, with average call rates.99%. Concordance rates between genotype calls of saliva- versus blood-extracted DNA samples from the same individual were also.99%. Additionally, in silico calling of copy number variants was successfully performed and verified by PCR. Conclusions/Significance: Our findings validate the use of saliva-obtained samples for genome-wide association studies i

    DLA Class II Alleles Are Associated with Risk for Canine Symmetrical Lupoid Onychodystropy (SLO)

    Get PDF
    Symmetrical lupoid onychodystrophy (SLO) is an immune-mediated disease in dogs affecting the claws with a suggested autoimmune aethiology. Sequence-based genotyping of the polymorphic exon 2 from DLA-DRB1, -DQA1, and -DQB1 class II loci were performed in a total of 98 SLO Gordon setter cases and 98 healthy controls. A risk haplotype (DRB1*01801/DQA1*00101/DQB1*00802) was present in 53% of cases and 34% of controls and conferred an elevated risk of developing SLO with an odds ratio (OR) of 2.1. When dogs homozygous for the risk haplotype were compared to all dogs not carrying the haplotype the OR was 5.4. However, a stronger protective haplotype (DRB1*02001/DQA1*00401/DQB1*01303, OR = 0.03, 1/OR = 33) was present in 16.8% of controls, but only in a single case (0.5%). The effect of the protective haplotype was clearly stronger than the risk haplotype, since 11.2% of the controls were heterozygous for the risk and protective haplotypes, whereas this combination was absent from cases. When the dogs with the protective haplotype were excluded, an OR of 2.5 was obtained when dogs homozygous for the risk haplotype were compared to those heterozygous for the risk haplotype, suggesting a co-dominant effect of the risk haplotype. In smaller sample sizes of the bearded collie and giant schnauzer breeds we found the same or similar haplotypes, sharing the same DQA1 allele, over-represented among the cases suggesting that the risk is associated primarily with DLA-DQ. We obtained conclusive results that DLA class II is significantly associated with risk of developing SLO in Gordon setters, thus supporting that SLO is an immune-mediated disease. Further studies of SLO in dogs may provide important insight into immune privilege of the nail apparatus and also knowledge about a number of inflammatory disorders of the nail apparatus like lichen planus, psoriasis, alopecia areata and onycholysis

    Bacterial Genomes: Habitat Specificity and Uncharted Organisms

    Get PDF
    The capability and speed in generating genomic data have increased profoundly since the release of the draft human genome in 2000. Additionally, sequencing costs have continued to plummet as the next generation of highly efficient sequencing technologies (next-generation sequencing) became available and commercial facilities promote market competition. However, new challenges have emerged as researchers attempt to efficiently process the massive amounts of sequence data being generated. First, the described genome sequences are unequally distributed among the branches of bacterial life and, second, bacterial pan-genomes are often not considered when setting aims for sequencing projects. Here, we propose that scientists should be concerned with attaining an improved equal representation of most of the bacterial tree of life organisms, at the genomic level. Moreover, they should take into account the natural variation that is often observed within bacterial species and the role of the often changing surrounding environment and natural selection pressures, which is central to bacterial speciation and genome evolution. Not only will such efforts contribute to our overall understanding of the microbial diversity extant in ecosystems as well as the structuring of the extant genomes, but they will also facilitate the development of better methods for (meta)genome annotation

    IL-17RA Signaling Amplifies Antibody-Induced Arthritis

    Get PDF
    Objective: To investigate the role of IL-17RA signaling in the effector phase of inflammatory arthritis using the K/BxN serumtransfer model. Methods: Wild-type and Il17ra 2/2 mice were injected with serum isolated from arthritic K/BxN mice and their clinical score was recorded daily. Mice were also harvested on days 12 and 21 and ankles were analyzed for cytokine and chemokine mRNA expression by qPCR on day 12 and for bone and cartilage erosions by histology on day 21, respectively. The induction of cytokine and chemokine expression levels by IL-17A in synovial-like fibroblasts was also analyzed using qPCR. Results: Il17ra 2/2 mice were partially protected from clinical signs of arthritis and had markedly fewer cartilage and bone erosions. The expression of several pro-inflammatory mediators, including the chemokines KC/CXCL1, MIP-2/CXCL2, LIX/ CXCL5 MIP-1c/CCL9, MCP-3/CCL7, MIP-3a/CCL20, the cytokines IL-1b, IL-6, RANKL and the matrix metalloproteinases MMP2, MMP3, and MMP13 were decreased in the ankles of Il17ra 2/2 mice compared to wild-type mice. Many of these proinflammatory genes attenuated in the ankles of Il17ra 2/2 mice were shown to be directly induced by IL-17A in synovial fibroblasts in vitro. Conclusions: IL-17RA signaling plays a role as an amplifier of the effector phase of inflammatory arthritis. This effect is likel

    IMMUNOGENICITY AND IMPACT ON NASOPHARYNGEAL CARRIAGE OF A SINGLE DOSE OF PCV10 GIVEN TO VIETNAMESE CHILDREN AT 18 MONTHS OF AGE.

    Get PDF
    Background: This study investigated the immunogenicity and impact on nasopharyngeal carriage of a single dose of PCV10 given to 18-month-old Vietnamese children. This information is important for countries considering catch-up vaccination during PCV introduction and in the context of vaccination during humanitarian crises. Methods: Two groups of PCV-naïve children within the Vietnam Pneumococcal Project received PCV10 (n=197) or no PCV (unvaccinated; n=199) at 18 months of age. Blood samples were collected at 18, 19, and 24 months of age, and nasopharyngeal swabs at 18 and 24 months of age. Immunogenicity was assessed by measuring serotype-specific IgG, opsonophagocytosis (OPA) and memory B cells (Bmem). Pneumococci were detected and quantified using real-time PCR and serotyped by microarray. Findings: At 19 months of age, IgG and OPA responses were higher in the PCV10 group compared with the unvaccinated group for all PCV10 serotypes and cross-reactive serotypes 6A and 19A. This was sustained out to 24 months of age, at which point PCV10-type carriage was 60% lower in the PCV10 group than the unvaccinated group. Bmem levels increased between 18 and 24 months of age in the vaccinated group. Interpretation: We demonstrate strong protective immune responses in vaccinees following a single dose of PCV10 at 18 months of age, and a potential impact on herd protection through a substantial reduction in vaccine-type carriage. A single dose of PCV10 in the second year of life could be considered as part of catch-up campaigns or in humanitarian crises to protect children at high-risk of pneumococcal disease

    Proteomic Changes Resulting from Gene Copy Number Variations in Cancer Cells

    Get PDF
    Along the transformation process, cells accumulate DNA aberrations, including mutations, translocations, amplifications, and deletions. Despite numerous studies, the overall effects of amplifications and deletions on the end point of gene expression—the level of proteins—is generally unknown. Here we use large-scale and high-resolution proteomics combined with gene copy number analysis to investigate in a global manner to what extent these genomic changes have a proteomic output and therefore the ability to affect cellular transformation. We accurately measure expression levels of 6,735 proteins and directly compare them to the gene copy number. We find that the average effect of these alterations on the protein expression is only a few percent. Nevertheless, by using a novel algorithm, we find the combined impact that many of these regional chromosomal aberrations have at the protein level. We show that proteins encoded by amplified oncogenes are often overexpressed, while adjacent amplified genes, which presumably do not promote growth and survival, are attenuated. Furthermore, regulation of biological processes and molecular complexes is independent of general copy number changes. By connecting the primary genome alteration to their proteomic consequences, this approach helps to interpret the data from large-scale cancer genomics efforts
    corecore