52 research outputs found

    Establishing the reliability of a novel battery of range of motion tests to enable evidence-based classification in Para Swimming

    Get PDF
    © 2018 Elsevier Ltd. Objectives: To evaluate the reliability of swimming-specific range of movement tests developed in order to permit evidenced-based classification in the sport of para swimming. Design: Test-retest intra- and inter-examiner reliability. Setting: International Swimming training camps and university exercise science departments. Participants: 42 non-disabled participants (mean age 23.2 years) and 24 Para swimmers (mean age 28.5 years). Main outcome measures: Intra- and inter-examiner reliability of a battery of novel active range of motion tests. Results: Good to excellent intra-examiner reliability was found for the majority (32/34) of tests in non-disabled participants (ICC = 0.85–0.98). SEM values ranged from 1.18° to 6.11°. Similarly, good to excellent inter-examiner reliability was found for the majority (35/42) of tests in non-disabled participants (ICC = 0.85–0.98). SEM values range from 0.73° to 6.52°. Para swimmers exhibited significantly reduced range of motion compared to non-disabled participants. Conclusions: The large majority of ROM tests included in this novel battery were reliable both within and between examiners in non-disabled participants. The tests were found to differentiate between non-disabled participants and Para swimmers with hypertonia or impaired muscle power

    Are mesenchymal stromal cells immune cells?

    Get PDF
    Mesenchymal stromal cells (MSCs) are considered to be promising agents for the treatment of immunological disease. Although originally identified as precursor cells for mesenchymal lineages, in vitro studies have demonstrated that MSCs possess diverse immune regulatory capacities. Pre-clinical models have shown beneficial effects of MSCs in multiple immunological diseases and a number of phase 1/2 clinical trials carried out so far have reported signs of immune modulation after MSC infusion. These data indicate that MSCs play a central role in the immune response. This raises the academic question whether MSCs are immune cells or whether they are tissue precursor cells with immunoregulatory capacity. Correct understanding of the immunological properties and origin of MSCs will aid in the appropriate and safe use of the cells for clinical therapy. In this review the whole spectrum of immunological properties of MSCs is discussed with the aim of determining the position of MSCs in the immune system

    Localized Populations of CD8low/− MHC Class I Tetramer+ SIV-Specific T Cells in Lymphoid Follicles and Genital Epithelium

    Get PDF
    CD8 T cells play an important role in controlling viral infections. We investigated the in situ localization of simian immunodeficiency virus (SIV)-specific T cells in lymph and genital tissues from SIV-infected macaques using MHC-class I tetramers. The majority of tetramer-binding cells localized in T cell zones and were CD8+. Curiously, small subpopulations of tetramer-binding cells that had little to no surface CD8 were detected in situ both early and late post-infection, and in both vaginally and rectally inoculated macaques. These tetramer+CD8low/− cells were more often localized in apparent B cell follicles relative to T cell zones and more often found near or within the genital epithelium than the submucosa. Cells analyzed by flow cytometry showed similar populations of cells. Further immunohistological characterization revealed small populations of tetramer+CD20− cells inside B cell follicles and that tetramer+ cells did not stain with γδ-TCR nor CD4 antibodies. Negative control tetramer staining indicated that tetramer+CD8low/− cells were not likely NK cells non-specifically binding to MHC tetramers. These findings have important implications for SIV-specific and other antigen-specific T cell function in these specific tissue locations, and suggest a model in which antigen-specific CD8+ T cells down modulate CD8 upon entering B cell follicles or the epithelial layer of tissues, or alternatively a model in which only antigen-specific CD8 T cells that down-modulate CD8 can enter B cell follicles or the epithelium

    Drug Repurposing: A Systematic Approach to Evaluate Candidate Oral Neuroprotective Interventions for Secondary Progressive Multiple Sclerosis

    Get PDF
    Objective: To develop and implement an evidence based framework to select, from drugs already licenced, candidate oral neuroprotective drugs to be tested in secondary progressive multiple sclerosis. Design: Systematic review of clinical studies of oral putative neuroprotective therapies in MS and four other neurodegenerative diseases with shared pathological features, followed by systematic review and meta-analyses of the in vivo experimental data for those interventions. We presented summary data to an international multi-disciplinary committee, which assessed each drug in turn using pre-specified criteria including consideration of mechanism of action. Results: We identified a short list of fifty-two candidate interventions. After review of all clinical and pre-clinical evidence we identified ibudilast, riluzole, amiloride, pirfenidone, fluoxetine, oxcarbazepine, and the polyunsaturated fatty-acid class (Linoleic Acid, Lipoic acid; Omega-3 fatty acid, Max EPA oil) as lead candidates for clinical evaluation. Conclusions: We demonstrate a standardised and systematic approach to candidate identification for drug rescue and repurposing trials that can be applied widely to neurodegenerative disorders

    Restrained Th17 response and myeloid cell infiltration into the central nervous system by human decidua-derived mesenchymal stem cells during experimental autoimmune encephalomyelitis

    Get PDF
    Background: Multiple sclerosis is a widespread inflammatory demyelinating disease. Several immunomodulatory therapies are available, including interferon-β, glatiramer acetate, natalizumab, fingolimod, and mitoxantrone. Although useful to delay disease progression, they do not provide a definitive cure and are associated with some undesirable side-effects. Accordingly, the search for new therapeutic methods constitutes an active investigation field. The use of mesenchymal stem cells (MSCs) to modify the disease course is currently the subject of intense interest. Decidua-derived MSCs (DMSCs) are a cell population obtained from human placental extraembryonic membranes able to differentiate into the three germ layers. This study explores the therapeutic potential of DMSCs. Methods: We used the experimental autoimmune encephalomyelitis (EAE) animal model to evaluate the effect of DMSCs on clinical signs of the disease and on the presence of inflammatory infiltrates in the central nervous system. We also compared the inflammatory profile of spleen T cells from DMSC-treated mice with that of EAE control animals, and the influence of DMSCs on the in vitro definition of the Th17 phenotype. Furthermore, we analyzed the effects on the presence of some critical cell types in central nervous system infiltrates. Results: Preventive intraperitoneal injection of DMSCs resulted in a significant delay of external signs of EAE. In addition, treatment of animals already presenting with moderate symptoms resulted in mild EAE with reduced disease scores. Besides decreased inflammatory infiltration, diminished percentages of CD4+IL17+, CD11b+Ly6G+ and CD11b+Ly6C+ cells were found in infiltrates of treated animals. Early immune response was mitigated, with spleen cells of DMSC-treated mice displaying low proliferative response to antigen, decreased production of interleukin (IL)-17, and increased production of the anti-inflammatory cytokines IL-4 and IL-10. Moreover, lower RORγT and higher GATA-3 expression levels were detected in DMSC-treated mice. DMSCs also showed a detrimental influence on the in vitro definition of the Th17 phenotype. Conclusions: DMSCs modulated the clinical course of EAE, modified the frequency and cell composition of the central nervous system infiltrates during the disease, and mediated an impairment of Th17 phenotype establishment in favor of the Th2 subtype. These results suggest that DMSCs might provide a new cell-based therapy for the control of multiple sclerosis.This work was sponsored by grants from Acción Estratégica en Salud (PI13/00297 and PI11/00581), the Neurosciences and Aging Foundation, the Francisco Soria Melguizo Foundation, Octopharma, and Parkinson Madrid (PI2012/0032).S

    The clinico-radiological paradox of cognitive function and MRI burden of white matter lesions in people with multiple sclerosis: a systematic review and meta-analysis.

    Get PDF
    Moderate correlation exists between the imaging quantification of brain white matter lesions and cognitive performance in people with multiple sclerosis (MS). This may reflect the greater importance of other features, including subvisible pathology, or methodological limitations of the primary literature.To summarise the cognitive clinico-radiological paradox and explore the potential methodological factors that could influence the assessment of this relationship.Systematic review and meta-analysis of primary research relating cognitive function to white matter lesion burden.Fifty papers met eligibility criteria for review, and meta-analysis of overall results was possible in thirty-two (2050 participants). Aggregate correlation between cognition and T2 lesion burden was r = -0.30 (95% confidence interval: -0.34, -0.26). Wide methodological variability was seen, particularly related to key factors in the cognitive data capture and image analysis techniques.Resolving the persistent clinico-radiological paradox will likely require simultaneous evaluation of multiple components of the complex pathology using optimum measurement techniques for both cognitive and MRI feature quantification. We recommend a consensus initiative to support common standards for image analysis in MS, enabling benchmarking while also supporting ongoing innovation

    GagCM9-Specific CD8+ T Cells Expressing Limited Public TCR Clonotypes Do Not Suppress SIV Replication In Vivo

    Get PDF
    Several lines of evidence suggest that HIV/SIV-specific CD8+ T cells play a critical role in the control of viral replication. Recently we observed high levels of viremia in Indian rhesus macaques vaccinated with a segment of SIVmac239 Gag (Gag45–269) that were subsequently infected with SIVsmE660. These seven Mamu-A*01+ animals developed CD8+ T cell responses against an immunodominant epitope in Gag, GagCM9, yet failed to control virus replication. We carried out a series of immunological and virological assays to understand why these Gag-specific CD8+ T cells could not control virus replication in vivo. GagCM9-specific CD8+ T cells from all of the animals were multifunctional and were found in the colonic mucosa. Additionally, GagCM9-specific CD8+ T cells accessed B cell follicles, the primary residence of SIV-infected cells in lymph nodes, with effector to target ratios between 20–250 GagCM9-specific CD8+ T cells per SIV-producing cell. Interestingly, vaccinated animals had few public TCR clonotypes within the GagCM9-specific CD8+ T cell population pre- and post-infection. The number of public TCR clonotypes expressed by GagCM9-specific CD8+ T cells post-infection significantly inversely correlated with chronic phase viral load. It is possible that these seven animals failed to control viral replication because of the narrow TCR repertoire expressed by the GagCM9-specific CD8+ T cell population elicited by vaccination and infection

    Is There an Economical Running Technique? A Review of Modifiable Biomechanical Factors Affecting Running Economy

    Get PDF

    Movement consistency during repetitive tool use action

    Get PDF
    The consistency and repeatability of movement patterns has been of long-standing interest in locomotor biomechanics, but less well explored in other domains. Tool use is one of such a domain; while the complex dynamics of the human-tool-environment system have been approached from various angles, to date it remains unknown how the rhythmicity of repetitive tool-using action emerges. To examine whether the spontaneously adopted movement frequency is a variable susceptible to individual execution approaches or emerges as constant behaviour, we recorded sawing motion across a range of 14 experimental conditions using various manipulations. This was compared to free and pantomimed arm movements. We found that a mean (SD) sawing frequency of 2.0 (0.4) Hz was employed across experimental conditions. Most experimental conditions did not significantly affect the sawing frequency, signifying the robustness of this spontaneously emerging movement. Free horizontal arm translation and miming of sawing was performed at half the movement frequency with more than double the excursion distance, showing that not all arm movements spontaneously emerge at the observed sawing parameters. Observed movement frequencies across all conditions could be closely predicted from movement time reference data for generic arm movements found in the Methods Time Measurement literature, highlighting a generic biomechanical relationship between the time taken for a given distance travelled underlying the observed behaviour. We conclude that our findings lend support to the hypothesis that repetitive movements during tool use are executed according to generic and predictable musculoskeletal mechanics and constraints, albeit in the context of the general task (sawing) and environmental constraints such as friction, rather than being subject to task-specific control or individual cognitive schemata
    • …
    corecore