2,077 research outputs found

    The Body Makes No Sound Against Glass

    Get PDF
    Senior Project submitted to The Division of Languages and Literature of Bard College

    Crystallization at Solvent Interfaces Enables Access to a Variety of Cocrystal Polymorphs and Hydrates

    Get PDF
    A crystal growth technique, interfacial cocrystallization, is demonstrated to be a simple and effective method for preparing multicomponent crystal forms. The technique is based on the generation of a liquid–liquid interface between two immiscible solutions of cocrystal-forming compounds, and its utility is demonstrated through the preparation of polymorphs and hydrates of caffeine cocrystals, involving three different hydroxy-2-naphthoic acids, including the formation of some with unexpected compositions

    Overland flow velocity and soil properties in established semi-natural woodland and wood pasture in an upland catchment

    Get PDF
    Management of upland land-use has considerable potential for mitigating flood risk by increasing topsoil storage and slowing overland flow. Recent work has highlighted the potential for vegetation to impact the velocity of saturation-excess overland flow. Woodland creation is widely proposed for Natural Flood Management (NFM), but data on saturation-excess overland flow in woodland habitats is lacking. Here we measure soil properties and overland flow velocities in established broadleaf woodland and wood pasture with an understorey dominated by either grass or bracken. We show that wood pasture dominated by bracken has overland flow velocity 12–20% lower than established broadleaf woodland and 19–27% lower than grass-dominated wood pasture. Established woodland soils exhibited eight times higher saturated hydraulic conductivity than bracken-dominated wood pasture and 80 times higher than grass-dominated wood pasture. We conclude that upland habitats can be managed to reduce flood risk, first by storing storm water in the soil and then by reducing overland flow velocity through rough surface vegetation. These factors combine to reduce floods by delaying the onset of overland flow runoff and slowing its delivery to streams. It is clear than Manning's n is far from constant in these shallow overland flows, the development of overland flow datasets is, therefore, also beneficial for improving the theory and practice of hillslope rainfall-runoff modelling

    Frequent burning promotes invasions of alien plants into a mesic African savanna

    Get PDF
    Fire is both inevitable and necessary for maintaining the structure and functioning of mesic savannas. Without disturbances such as fire and herbivory, tree cover can increase at the expense of grass cover and over time dominate mesic savannas. Consequently, repeated burning is widely used to suppress tree recruitment and control bush encroachment. However, the effect of regular burning on invasion by alien plant species is little understood. Here, vegetation data from a long-term fire experiment, which began in 1953 in a mesic Zimbabwean savanna, were used to test whether the frequency of burning promoted alien plant invasion. The fire treatments consisted of late season fires, lit at 1-, 2-, 3-, and 4-year intervals, and these regularly burnt plots were compared with unburnt plots. Results show that over half a century of frequent burning promoted the invasion by alien plants relative to areas where fire was excluded. More alien plant species became established in plots that had a higher frequency of burning. The proportion of alien species in the species assemblage was highest in the annually burnt plots followed by plots burnt biennially. Alien plant invasion was lowest in plots protected from fire but did not differ significantly between plots burnt triennially and quadrennially. Further, the abundance of five alien forbs increased significantly as the interval (in years) between fires became shorter. On average, the density of these alien forbs in annually burnt plots was at least ten times as high as the density of unburnt plots. Plant diversity was also altered by long-term burning. Total plant species richness was significantly lower in the unburnt plots compared to regularly burnt plots. These findings suggest that frequent burning of mesic savannas enhances invasion by alien plants, with short intervals between fires favouring alien forbs. Therefore, reducing the frequency of burning may be a key to minimising the risk of alien plant spread into mesic savannas, which is important because invasive plants pose a threat to native biodiversity and may alter savanna functioning

    The influence of land management and seasonal changes in surface vegetation on flood mitigation in two UK upland catchments

    Get PDF
    As the frequency and magnitude of storm events increase with climate change, understanding how season and management influence flood peaks is essential. The influence of season and management of grasslands on flood peak timing and magnitude was modelled for Swindale and Calderdale, two catchments in northern England. Spatially-Distributed TOPMODEL was used to investigate two scenarios across four storm events using empirically-based soil and vegetation data. The first scenario applied seasonal changes in vegetative roughness, quantifying the effect on flood peaks at catchment scale. The second scenario modelled the influence of grassland management from historical high-intensity grazing to a series of natural succession stages between grassland and woodland, and a conservation-based management. Model outputs were analysed by flow type, measuring total, overland and base flow peaks at the catchment outlet. Seasonal changes to vegetation were found to increase overland flow peaks by up to +2.2% in winter and reduce them by −5.5% in summer compared to the annual average. Percentage changes in flood peak due to hillslope grassland management scenarios were more substantial; overland flow peaks were reduced by up to 41% in Calderdale where extensive woodland development was the most effective mitigation strategy, and up to 35% in Swindale, where a rank grassland dominated catchment was the most effective. Conservation-based farming practices were also useful, reducing overland flow peak by up to 42% compared to the high intensity grazing scenario. Neither management nor seasonality changed the timing of runoff peaks by >45 min. Where overland flow dominates, especially in catchments with shallow soils, surface roughness was found to be more influential than soil permeability for flood mitigation. We recommend that seasonal changes to roughness are considered alongside the spatial distribution of Natural Flood Management in mosaiced upland catchments

    Branding the nation: Towards a better understanding

    Get PDF
    This paper aims to clarify some misunderstanding about nation branding. It examines the origins and interpretations of the concept, and draws a comparison between nation branding and commercial branding. A new definition is offered that emphasises the need to shift from “branding” the nation to nation image management

    The effect of various breath-hold techniques on the cardiorespiratory response to facial immersion in humans

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: All data supporting the results of the paper are available as Supporting Information.NEW FINDINGS: What is the central question of this study? What is the effect of three repeated breath-hold techniques routinely used by freedivers, thought to manipulate arterial partial pressures of O2 and CO2 , on the cardiorespiratory and haematological response to breath-holding during facial immersion? What is the main finding and its importance? All three techniques increased breath-hold by a similar duration, probably owing to the similar marked increase in end-tidal O2 and decrease in end-tidal CO2 observed in all three trials before facial immersion. These were the only cardiorespiratory changes that were consistently manipulated before the maximal breath-hold. This would suggest that pronounced bradycardia and vasoconstriction of selective vascular beds are probably not obligatory for prolonging breath-hold duration. ABSTRACT: Repeated maximal breath-holds have been demonstrated to induce bradycardia, increase haematocrit and haemoglobin and prolong subsequent breath-hold duration by 20%. Freedivers use non-maximal breath-hold techniques (BHTs) to improve breath-hold duration. The aim of this study was to investigate the cardiorespiratory and haematological responses to various BHTs. Ten healthy men (34.5 ± 1.9 years) attended five randomized experimental trials and performed a 40 min period of quiet rest or one of three BHTs followed by a maximal breath-hold challenge during facial immersion in water at 30 or 10°C. Cardiovascular and respiratory parameters were measured continuously using finger plethysmography and breath-by-breath gas analysis, respectively, and venous blood samples were collected throughout. Facial immersion in cold water caused marked bradycardia (74.1 vs. 50.2 beats/min after 40 s) but did not increase breath-hold duration compared with warm water control conditions. Facial immersion breath-hold duration was 30.8-43.3% greater than the control duration when preceded by BHTs that involved repeated breath-holds of constant duration (P = 0.021), increasing duration (P  0.05). In conclusion, the duration of apnoea can be extended by manipulating blood gases through repeated prior breath-holds, but changes in cardiac output and red blood cell mass do not appear essential.Royal Nav

    Cosmological parameters from the clustering of AGN

    Get PDF
    We attempt to put constraints on different cosmological and biasing models by combining the recent clustering results of X-ray sources in the local (z≀0.1z\le 0.1) and distant universe (z∌1z\sim 1).Comment: 9 pages, 3 figures, to be published in the proceedings of the ''2nd Hellenic Cosmology Workshop'', Athens 2001, eds, Manolis Plionis & Spiros Kotsaki

    The detection of the imprint of filaments on cosmic microwave background lensing

    Full text link
    Galaxy redshift surveys, such as 2dF, SDSS, 6df, GAMA and VIPERS, have shown that the spatial distribution of matter forms a rich web, known as the cosmic web. The majority of galaxy survey analyses measure the amplitude of galaxy clustering as a function of scale, ignoring information beyond a small number of summary statistics. Since the matter density field becomes highly non-Gaussian as structure evolves under gravity, we expect other statistical descriptions of the field to provide us with additional information. One way to study the non-Gaussianity is to study filaments, which evolve non-linearly from the initial density fluctuations produced in the primordial Universe. In our study, we report the first detection of CMB (Cosmic Microwave Background) lensing by filaments and we apply a null test to confirm our detection. Furthermore, we propose a phenomenological model to interpret the detected signal and we measure how filaments trace the matter distribution on large scales through filament bias, which we measure to be around 1.5. Our study provides a new scope to understand the environmental dependence of galaxy formation. In the future, the joint analysis of lensing and Sunyaev-Zel'dovich observations might reveal the properties of `missing baryons', the vast majority of the gas which resides in the intergalactic medium and has so far evaded most observations

    A filament of dark matter between two clusters of galaxies

    Full text link
    It is a firm prediction of the concordance Cold Dark Matter (CDM) cosmological model that galaxy clusters live at the intersection of large-scale structure filaments. The thread-like structure of this "cosmic web" has been traced by galaxy redshift surveys for decades. More recently the Warm-Hot Intergalactic Medium (WHIM) residing in low redshift filaments has been observed in emission and absorption. However, a reliable direct detection of the underlying Dark Matter skeleton, which should contain more than half of all matter, remained elusive, as earlier candidates for such detections were either falsified or suffered from low signal-to-noise ratios and unphysical misalignements of dark and luminous matter. Here we report the detection of a dark matter filament connecting the two main components of the Abell 222/223 supercluster system from its weak gravitational lensing signal, both in a non-parametric mass reconstruction and in parametric model fits. This filament is coincident with an overdensity of galaxies and diffuse, soft X-ray emission and contributes mass comparable to that of an additional galaxy cluster to the total mass of the supercluster. Combined with X-ray observations, we place an upper limit of 0.09 on the hot gas fraction, the mass of X-ray emitting gas divided by the total mass, in the filament.Comment: Nature, in pres
    • 

    corecore