405 research outputs found

    Measurement of cosmic-ray low-energy antiproton spectrum with the first BESS-Polar Antarctic flight

    Full text link
    The BESS-Polar spectrometer had its first successful balloon flight over Antarctica in December 2004. During the 8.5-day long-duration flight, almost 0.9 billion events were recorded and 1,520 antiprotons were detected in the energy range 0.1-4.2 GeV. In this paper, we report the antiproton spectrum obtained, discuss the origin of cosmic-ray antiprotons, and use antiprotons to probe the effect of charge sign dependent drift in the solar modulation.Comment: 18 pages, 1 table, 5 figures, submitted to Physics Letters

    Measurements of Atmospheric Antiprotons

    Full text link
    We measured atmospheric antiproton spectra in the energy range 0.2 to 3.4 GeV, at sea level and at balloon altitude in the atmospheric depth range 4.5 to 26 g/cm^2. The observed energy spectra, including our previous measurements at mountain altitude, were compared with estimated spectra calculated on various assumptions regarding the energy distribution of antiprotons that interacted with air nuclei.Comment: Accepted for publication in PL

    Measurements of 0.2 to 20 GeV/n cosmic-ray proton and helium spectra from 1997 through 2002 with the BESS spectrometer

    Get PDF
    We measured low energy cosmic-ray proton and helium spectra in the kinetic energy range 0.215 - 21.5 GeV/n at different solar activities during a period from 1997 to 2002. The observations were carried out with the BESS spectrometer launched on a balloon at Lynn Lake, Canada. A calculation for the correction of secondary particle backgrounds from the overlying atmosphere was improved by using the measured spectra at small atmospheric depths ranging from 5 through 37 g/cm^2. The uncertainties including statistical and systematic errors of the obtained spectra at the top of atmosphere are 5-7 % for protons and 6-9 % for helium nuclei in the energy range 0.5 - 5 GeV/n.Comment: 27 pages, 7 Tables, 9 figures, Submitted to Astroparticle Physic

    Measurements of Proton, Helium and Muon Spectra at Small Atmospheric Depths with the BESS Spectrometer

    Full text link
    The cosmic-ray proton, helium, and muon spectra at small atmospheric depths of 4.5 -- 28 g/cm^2 were precisely measured during the slow descending period of the BESS-2001 balloon flight. The variation of atmospheric secondary particle fluxes as a function of atmospheric depth provides fundamental information to study hadronic interactions of the primary cosmic rays with the atmosphere.Comment: 21 pages, 11 figures, 4 table

    Measurements of Primary and Atmospheric Cosmic-Ray Spectra with the BESS-TeV Spectrometer

    Get PDF
    Primary and atmospheric cosmic-ray spectra were precisely measured with the BESS-TeV spectrometer. The spectrometer was upgraded from BESS-98 to achieve seven times higher resolution in momentum measurement. We report absolute fluxes of primary protons and helium nuclei in the energy ranges, 1-540 GeV and 1-250 GeV/n, respectively, and absolute flux of atmospheric muons in the momentum range 0.6-400 GeV/c.Comment: 26 pages, 9 figures, 3 tables, Submitted to Phys. Lett.

    Precise Measurements of Atmospheric Muon Fluxes with the BESS Spectrometer

    Full text link
    The vertical absolute fluxes of atmospheric muons and muon charge ratio have been measured precisely at different geomagnetic locations by using the BESS spectrometer. The observations had been performed at sea level (30 m above sea level) in Tsukuba, Japan, and at 360 m above sea level in Lynn Lake, Canada. The vertical cutoff rigidities in Tsukuba (36.2 N, 140.1 E) and in Lynn Lake (56.5 N, 101.0 W) are 11.4 GV and 0.4 GV, respectively. We have obtained vertical fluxes of positive and negative muons in a momentum range from 0.6 to 20 GeV/c with systematic errors less than 3 % in both measurements. By comparing the data collected at two different geomagnetic latitudes, we have seen an effect of cutoff rigidity. The dependence on the atmospheric pressure and temperature, and the solar modulation effect have been also clearly observed. We also clearly observed the decrease of charge ratio of muons at low momentum side with at higher cutoff rigidity region.Comment: 35 pages, 9 figures. Submitted to Astroparticle Physic

    Balloon Measurements of Cosmic Ray Muon Spectra in the Atmosphere along with those of Primary Protons and Helium Nuclei over Mid-Latitude

    Get PDF
    We report here the measurements of the energy spectra of atmospheric muons and of the cosmic ray primary proton and helium nuclei in a single experiment. These were carried out using the MASS superconducting spectrometer in a balloon flight experiment in 1991. The relevance of these results to the atmospheric neutrino anomaly is emphasized. In particular, this approach allows uncertainties caused by the level of solar modulation, the geomagnetic cut-off of the primaries and possible experimental systematics to be decoupled in the comparison of calculated fluxes of muons to measured muon fluxes. The muon observations cover the momentum and depth ranges of 0.3-40 GeV/c and 5-886 g/cmsquared, respectively. The proton and helium primary measurements cover the rigidity range from 3 to 100 GV, in which both the solar modulation and the geomagnetic cut-off affect the energy spectra at low energies.Comment: 31 pages, including 17 figures, simplified apparatus figure, to appear in Phys. Rev.

    EndoTime: non-categorical timing estimates for luteal endometrium

    Get PDF
    STUDY QUESTION Can the accuracy of timing of luteal phase endometrial biopsies based on urinary ovulation testing be improved by measuring the expression of a small number of genes and a continuous, non-categorical modelling approach? SUMMARY ANSWER Measuring the expression levels of six genes (IL2RB, IGFBP1, CXCL14, DPP4, GPX3 and SLC15A2) is sufficient to obtain substantially more accurate timing estimates and to assess the reliability of timing estimates for each sample. WHAT IS KNOWN ALREADY Commercially available endometrial timing approaches based on gene expression require large gene sets and use a categorical approach that classifies samples as pre-receptive, receptive or post-receptive. STUDY DESIGN, SIZE, DURATION Gene expression was measured by RTq-PCR in different sample sets, comprising a total of 664 endometrial biopsies obtained 4–12 days after a self-reported positive home ovulation test. A further 36 endometrial samples were profiled by RTq-PCR as well as RNA-sequencing. PARTICIPANTS/MATERIALS, SETTING, METHODS A computational procedure, named ‘EndoTime’, was established that models the temporal profile of each gene and estimates the timing of each sample. Iterating these steps, temporal profiles are gradually refined as sample timings are being updated, and confidence in timing estimates is increased. After convergence, the method reports updated timing estimates for each sample while preserving the overall distribution of time points. MAIN RESULTS AND THE ROLE OF CHANCE The Wilcoxon rank-sum test was used to confirm that ordering samples by EndoTime estimates yields sharper temporal expression profiles for held-out genes (not used when determining sample timings) than ordering the same expression values by patient-reported times (GPX3: P  0.05). LARGE SCALE DATA The RTq-PCR data files are available via the GitHub repository for the EndoTime software at https://github.com/AE-Mitchell/EndoTime, as is the code used for pre-processing of RTq-PCR data. The RNA-sequencing data are available on GEO (accession GSE180485). LIMITATIONS, REASONS FOR CAUTION Timing estimates are informed by glandular gene expression and will only represent the temporal state of other endometrial cell types if in synchrony with the epithelium. Methods that estimate the day of ovulation are still required as these data are essential inputs in our method. Our approach, in its current iteration, performs batch correction such that larger sample batches impart greater accuracy to timing estimations. In theory, our method requires endometrial samples obtained at different days in the luteal phase. In practice, however, this is not a concern as timings based on urinary ovulation testing are associated with a sufficient level of noise to ensure that a variety of time points will be sampled. WIDER IMPLICATIONS OF THE FINDINGS Our method is the first to assay the temporal state of luteal-phase endometrial samples on a continuous domain. It is freely available with fully shared data and open-source software. EndoTime enables accurate temporal profiling of any gene in luteal endometrial samples for a wide range of research applications and, potentially, clinical use

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair
    • 

    corecore