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STUDY QUESTION: Can the accuracy of timing of luteal phase endometrial biopsies based on urinary ovulation testing be improved by

measuring the expression of a small number of genes and a continuous, non-categorical modelling approach?

SUMMARY ANSWER: Measuring the expression levels of six genes (IL2RB, IGFBP1, CXCL14, DPP4, GPX3 and SLC15A2) is sufficient

to obtain substantially more accurate timing estimates and to assess the reliability of timing estimates for each sample.

WHAT IS KNOWN ALREADY: Commercially available endometrial timing approaches based on gene expression require large gene

sets and use a categorical approach that classifies samples as pre-receptive, receptive or post-receptive.

STUDY DESIGN, SIZE, DURATION: Gene expression was measured by RTq-PCR in different sample sets, comprising a total of

664 endometrial biopsies obtained 4–12 days after a self-reported positive home ovulation test. A further 36 endometrial samples were

profiled by RTq-PCR as well as RNA-sequencing.

PARTICIPANTS/MATERIALS, SETTING, METHODS: A computational procedure, named ‘EndoTime’, was established that models

the temporal profile of each gene and estimates the timing of each sample. Iterating these steps, temporal profiles are gradually refined as

sample timings are being updated, and confidence in timing estimates is increased. After convergence, the method reports updated timing

estimates for each sample while preserving the overall distribution of time points.

MAIN RESULTS AND THE ROLE OF CHANCE: The Wilcoxon rank-sum test was used to confirm that ordering samples by

EndoTime estimates yields sharper temporal expression profiles for held-out genes (not used when determining sample timings) than

ordering the same expression values by patient-reported times (GPX3: P< 0.005; CXCL14: P< 2.7e�6; DPP4: P< 3.7e�13). Pearson

correlation between EndoTime estimates for the same sample set but based on RTq-PCR or RNA-sequencing data showed a high degree

of congruency between the two (P¼ 8.6e�10, R2 ¼ 0.687). Estimated timings did not differ significantly between control subjects and

patients with recurrent pregnancy loss or recurrent implantation failure (P> 0.05).

LARGE SCALE DATA: The RTq-PCR data files are available via the GitHub repository for the EndoTime software at https://github.

com/AE-Mitchell/EndoTime, as is the code used for pre-processing of RTq-PCR data. The RNA-sequencing data are available on GEO

(accession GSE180485).

LIMITATIONS, REASONS FOR CAUTION: Timing estimates are informed by glandular gene expression and will only represent the

temporal state of other endometrial cell types if in synchrony with the epithelium. Methods that estimate the day of ovulation are still

required as these data are essential inputs in our method. Our approach, in its current iteration, performs batch correction such that larger

sample batches impart greater accuracy to timing estimations. In theory, our method requires endometrial samples obtained at different

days in the luteal phase. In practice, however, this is not a concern as timings based on urinary ovulation testing are associated with a

sufficient level of noise to ensure that a variety of time points will be sampled.

WIDER IMPLICATIONS OF THE FINDINGS:Our method is the first to assay the temporal state of luteal-phase endometrial samples

on a continuous domain. It is freely available with fully shared data and open-source software. EndoTime enables accurate temporal

profiling of any gene in luteal endometrial samples for a wide range of research applications and, potentially, clinical use.

†The authors consider that the first two authors should be regarded as joint First Authors.
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Introduction

Menstruation is the defining characteristic of the endometrium in

humans and higher primates, a trait otherwise found in only a handful

of non-primate species (Bellofiore et al., 2017). As a consequence of

menstruation, the endometrium undergoes iterative cycles of tissue re-

generation, rapid proliferation and differentiation, which cumulate in a

transient window of implantation during the midluteal phase of the

cycle. The window of implantation represents an inflection point in

the cycle, after which the endometrium either breaks down or is

transformed into the decidua of pregnancy, a specialized matrix that

accommodates the placenta throughout gestation (Gellersen and

Brosens, 2014). Endometrial cyclicity is driven by the rise and fall in

ovarian oestrogen and progesterone production, triggering coordinated

spatiotemporal gene expression changes in resident epithelial, stromal

and vascular cells (Wang et al., 2020). Furthermore, the midluteal win-

dow of implantation heralds the start of intense tissue remodelling,

characterized not only by abrupt and dramatic changes in epithelial

gene expression (Wang et al., 2020), differentiation of stromal cells in

pre-decidual cells (Lucas et al., 2020) and angiogenesis (Demir et al.,

2010), but also by an influx of circulating innate immune cells (Strunz

et al., 2021), most prominently uterine natural killer cells (Brighton

et al., 2017) as well as non-haematopoietic bone marrow-derived

progenitor cells (Diniz-da-Costa et al., 2021).

It is widely accepted that pathological cues that interfere with the

sequence of endometrial events leading to a functional implantation

window causes reproductive failure, including recurrent implantation

failure (RIF) and recurrent pregnancy loss (RPL) (Koot et al., 2016;

Lucas et al., 2020). However, it has proven challenging to parse the

precise underlying mechanisms. There are multiple challenges intrinsic

to endometrial research, including heterogeneity in the cellular compo-

sition of endometrial biopsies (Suhorutshenko et al., 2018), inherent

inter-cycle variability in local immune cells (Brighton et al., 2017) and,

most prominently, the rapid temporal changes in gene expression

across the luteal phase (Wang et al., 2020). Accurate timing informa-

tion is therefore critical in endometrial analysis (Devesa-Peiro et al.,

2021). While the average length of menstrual cycle is 28 days, there is

considerable intra- and inter-individual variation (Soumpasis et al.,

2020). A pragmatic solution is to schedule biopsies relative to the pre-

ovulatory LH surge (Tewary et al., 2020). A prospective study on a

small cohort of healthy women (n¼ 40) reported that the urinary LH

surge occurs mostly within one day prior to ovulation, although

the range was 4 days (Johnson et al., 2015; Roos et al., 2015).

Furthermore, the rise in urinary pregnanediol-3-glucuronide, a proges-

terone metabolite, is more variable, occurring over a range of 5 days

after ovulation (Johnson et al., 2015; Roos et al., 2015). Thus,

while the timing of endometrial biopsies relative to clinical markers of

ovulation is useful and convenient, it does not ensure comparable

exposures to progesterone stimulation.

A complementary strategy is to infer timing by analysing the endo-

metrial phenotype. Histological dating using the Noyes criteria was the

foundational approach (Noyes et al., 1950), but its accuracy has been

brought into question (Coutifaris et al., 2004; Murray et al., 2004).

Alternative methods for timing are based largely on detection of pro-

teins, transcripts or microRNAs that mark the putative implantation

window (Giudice and Saleh, 1995; Lessey, 1998; Develioglu et al.,

1999; Dubowy et al., 2003; Kliman et al., 2006; Aghajanova et al.,

2009; Sha et al., 2011; Zhang et al., 2012). In addition, several compu-

tational approaches for the prediction of the window of implantation

are available commercially. The Win-test (Haouzi et al., 2009, 2021),

ERA (D�ıaz-Gimeno et al., 2011; Ruiz-Alonso et al., 2013) and ER

Map/ER Grade (Enciso et al., 2018) utilize gene panels of varying size

(11, 238 and 40 genes, respectively) in order to categorize endome-

trial samples as pre-receptive, receptive, or post-receptive. However,

these approaches not only offer limited temporal resolution but also

risk misclassification of samples at the boundary of these time win-

dows. At present, there are no cost-effective, validated methods to as-

sess luteal phase endometrium in a continuous, time-dependent

domain.

This study describes the development and validation of an

expression-based assay that reflects time as a continuous measure-

ment of days and hours, using a discrete set of temporal endometrial

genes. For any given sample within a set, gene expression levels are

used to define probability distributions based on the expression of all

other samples in order to identify the most likely sample timing esti-

mate with respect to the data of each gene, before being aggregated

to provide a singular estimate. This process is then iterated, with each

new series of estimated timings informing the next set of distributions

until the process reaches convergence. Our method, termed

EndoTime, is freely available as open-source software.

Materials and methods

Ethics

The study was approved by the NHS Research Ethics Committee,

Hammersmith and Queen Charlotte’s & Chelsea Research Ethics

Committee (1997/5065), and Tommy’s National Reproductive Health

Biobank (REC reference: 18/WA/0356). All samples were obtained

with written informed consent and in accordance with The Declaration

of Helsinki (2000) guidelines.

Endometrial sample collection

Endometrial biopsies were obtained from women attending the

Implantation Clinic, a dedicated research clinic at University Hospitals

Coventry and Warwickshire (UHCW) National Health Service Trust.

748 Lipecki et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/h
u
m

re
p
/a

rtic
le

/3
7
/4

/7
4
7
/6

5
1
7
1
7
7
 b

y
 K

IM
 H

o
h
e
n
h
e
im

 u
s
e
r o

n
 1

7
 J

a
n
u
a
ry

 2
0
2
4



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Surplus tissues from endometrial biopsies obtained for diagnostic pur-

poses were used for this study. Participants were instructed to use

over-the-counter urinary ovulation tests and contacted the clinic on

the day of a positive test or soon after. An endometrial biopsy was

then scheduled 4–12days after a positive test. The timing of endome-

trial biopsies was designated as LHþ (day), i.e. the number of days fol-

lowing a positive urinary ovulation test. Following transvaginal

ultrasound assessment to exclude overt pelvic pathology, an endome-

trial biopsy was obtained using a Wallach EndocellTM endometrial sam-

pler. All samples were immediately portioned with one part placed in

RNAlater Stabilization Solution (Sigma-Aldrich, Dorset, UK) for a mini-

mum of 24 h at 4�C before removal and storage at �80�C, one part

snap frozen in liquid nitrogen, and one part fixed in 10% formalin for

immunohistochemistry.

Two sets of RTq-PCR data were utilized in the development of

EndoTime. Data Set I was used for model training, consisting of DCT

values for 257 endometrial samples, with 96 provided by patients diag-

nosed with RPL, 81 by patients diagnosed with RIF and 80 acting as

controls. Data Set II was applied in tandem with a trained model in or-

der to provide timing estimates for 36 samples independently of

patient-reported values. EndoTime was then applied to an indepen-

dent data set, Data Set III, comprising of 407 LH-timed endometrial bi-

opsies. Demographic information for all three data sets is presented in

Supplementary Table SI. The number of samples at each timepoint

(LHþ) is shown in Supplementary Table SII. The sign for all DCT val-

ues in all three sets was first inverted in order to positively correlate

with gene expression.

RTq-PCR

Total RNA was extracted from RNAlater-protected endometrial biop-

sies using STAT-60 (AMS Biotechnology, Oxford, UK), according to

the manufacturer’s instructions. Reverse transcription was performed

from 1mg RNA using the Quantitect Reverse Transcription Kit

(QIAGEN, Manchester, UK) and cDNA was diluted to 10ng/ml equiv-

alent before use in qPCR. Amplification was performed on a Quant5

Real-Time PCR system (Applied Biosystems, Paisley, UK) in 10ml reac-

tions using 2� QuantiFast SYBR Green PCR Master Mix containing

ROX dye (QIAGEN), with 300nM each of forward and reverse pri-

mers. L19 was used as a reference gene. Primer sequences of marker

genes and the endometrial cell type(s) of expression are tabulated in

Supplementary Table SIII.

RNA-sequencing

RNA was purified using RNA STAT-60 (AMS Bio) according to manu-

facturer’s instructions and treated using Amplification Grade DNase I

(Invitrogen) followed by ethanol precipitation and clean-up. Quality

control, library preparation and sequencing were performed by the

Wellcome Trust Centre for Human Genetics. Libraries were prepared

using the Illumina TruSeq Stranded mRNA sample prep kit according

to manufacturer’s instructions. Paired-end 75bp sequencing was per-

formed on Illumina HiSeq4000.

Tissue imaging

Endometrial biopsies were fixed overnight in 10% neutral buffered for-

malin at 4�C and wax embedded in Surgipath Formula ‘R’ paraffin

using the Shandon Excelsior ES Tissue processor (ThermoFisher).

Tissues were sliced into 3lM sections on a microtome and adhered

to coverslips by overnight incubation at 60�C. Deparaffinization, anti-

gen retrieval (pH 9), antibody staining, haematoxylin counter stain and

3,3’-diaminobenzidine colour development were fully automated in a

Leica BondMax autostainer (Leica BioSystems). Tissue sections were

stained for CD56 (a uNK cell-specific surface antigen) using a 1:200

dilution of concentrated CD56 antibody (NCL-L-CD56-504,

Novocastra, Leica BioSystems). Stained slides were de-hydrated,

cleared and cover-slipped in a Tissue-Tek Prisma Automated Slide

Stainer, model 6134 (Sakura Flinetek Inc., CA, USA). Bright-field

images were obtained on a Mirax Midi slide scanner using a 20� ob-

jective lens and opened in Panoramic Viewer v1.15.4 (3DHISTECH

Ltd, Budapest, Hungary).

Pre-processing of RTq-PCR data

Expression (DCT) values in individual samples in Data Sets I and III

were normalized to a scale of zero to one per gene and then adjusted

by a batch-specific additive constant as a modest batch effect correc-

tion, making mean expression values equal in each batch. Samples in

Data Set II were processed for RTq-PCR analysis as a single batch.

Pre-processing of rLH1 values

EndoTime modelling required that reported sample time points be

converted from an ordinal to a continuous domain, a process that was

undertaken in two steps. First, random noise sampled from a uniform

distribution between �0.5 and 0.5 was added to each reported LHþ

(rLHþ) value. Second, samples were sorted in ascending order

according to these updated timings, and the timings were smoothed

using linear regression. This procedure allowed for each sample to be

spaced evenly throughout the defined time course in a non-discrete

manner, but close to its original rLHþ value, an approach that was

considered robust in the presence of samples with unusually high or

low reported timing values.

EndoTime method

The approach for modelling via EndoTime relies upon an iteration of

temporal gene expression profile refinement followed by the applica-

tion of these refined profiles to estimate sample timings. Continuous

rLHþ values generated during pre-processing were used to form initial

expression profiles specific to each gene in the panel, which were then

partitioned into windows of equal size (Supplementary Fig. S1). A nor-

mal distribution was used to model gene expression inside the time

window with a mean inferred from samples inside the window and a

weighted standard deviation based on the relative distance of points

from the mean (Supplementary Fig. S2). Each window represented a

singular time point derived from the median of binned reported time

points. The first iteration utilized a bin size of 80 samples, which de-

creased by 10 with each successive iteration to a minimum of 20.

Where temporal profiles deviate strongly from linearity, the normal

distribution for data in a window could make for an inaccurate match

of the data, but as window sizes are decreased deviations from linear-

ity will become minor in later iterations of EndoTime.

Each sample within the data set was then assessed individually for

its likely timing. The expression values for each marker gene within

The EndoTime method 749
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each window were used to generate a probability density curve based

on the likelihood that the expression values observed in a sample

were drawn from the distribution seen in the windowed data. This

resulted in a set of six probability density curves being generated per

sample, with each curve representing the results of attempting to esti-

mate timing for the sample based on one gene alone, with associated

curve maxima suggesting the time point with the greatest likelihood.

Utilizing a shrinking bin size allowed for the first iteration of the pro-

cess to filter out the majority of noise introduced by unreliable rLHþ

into the data. Subsequent iterations refined estimations, while enforc-

ing a minimum bin size ensured that the curves were smooth and pre-

sented a single clear maximum (Supplementary Fig. S3).

This process of generating six individual probability density curves

also allowed for an assessment to be made regarding the congruency

of their peak maxima and therefore the consistency with which each

gene provided the same timing estimate. Synchronous samples were

those wherein the six maxima all suggested a similar estimate, while

asynchronous samples were those that presented conflicting estima-

tions; an ‘asynchrony’ score was provided to each sample based on

the standard deviation among all six maxima, which describes how co-

herently the aforementioned probability density curve-based approach

provides a singular timing estimate.

Consolidating these six curves into a single curve by averaging their

scaled densities allowed for the identification of a maximum in a single

curve, which was used as the new time point estimation for the sam-

ple. A window-based approach was used when consolidating the six

individual curves into one, with bin sizes equal to those used when

generating the underlying reference profiles of panel gene expression.

This process iterated until convergence, with each iteration undertak-

ing both refinement of temporal profiles and time point estimation.

The difference between the estimations provided by the preceding

and current iteration was measured using the Euclidean distance and

convergence was declared once the distance fell below 2.

During the modelling process, the absolute values of sample timings

could deviate from the desired range as our method was primarily

designed to optimize the correct order of samples, rather than retain-

ing the original unit associated with timings. To ensure that EndoTime

outputs are in line with original units, the raw timings obtained by

modelling were converted following the last iteration such that the

overall distribution of patient-reported LH times is approximately

matched by the EndoTime output.

The six panel genes initially formed part of a set of 15 genes that

were measured across the samples of Data Set I (Supplementary

Table SIV), providing sufficient data to reconstruct the original tempo-

ral profiles in the presence of substantial noise. After establishing the

EndoTime method, we gradually reduced this set of genes by succes-

sively removing the gene that least affected the Spearman correlation

of sample ranks inferred with and without the gene. We stopped this

process at six genes even though the correlation was still greater than

0.99 in order to be able to ascertain asynchrony scores with

confidence.

Pre-processing of RNA-seq data

RNA-seq libraries were mapped to the hg19 human genome assembly

(2014) using Bowtie v. 2.2.3 (Langmead et al., 2009), TopHat v.2.0.12

(Trapnell et al., 2009) and Samtools v.0.1.19 (Li et al., 2009) and reads

mapped to features were counted via HTSeq v.0.6.1 (Anders et al.,

2015) prior to Transcripts Per Million (TPM) normalization.

In order to apply EndoTime to RNA-seq data, an approach was

developed to convert read counts of EndoTime panel genes to

pseudo-RTq-PCR data. TPM for each of the six timing panel genes

were initially log2-transformed and then transformed to match the

mean and standard deviation for each respective gene in the RTq-PCR

data of Data Set I, with all processing performed using base functions

in R v.4.0.2 (R Core Team, 2021).

Statistical analyses

To assess the improvement in timing accuracy, we used a cross valida-

tion approach. Sample timings were estimated using EndoTime with a

panel of only five genes, holding out the expression data for one gene.

Expression data for the held-out gene was ordered (i) by patient-

reported times (denoting this vector as vP), (ii) by EndoTime timing

estimates (denoted as vE) and (iii) by expression level, in ascending or-

der if the expression level of the held-out gene increases over time

and descending order otherwise (denoted as vG). As patient-reported

times are integer values with a unit of days, breaking ties needed to be

resolved in order to compare directly against the other vectors. This

was done by ordering samples of the same day in ascending or

descending order according to the expression level of the held-out

gene. We applied the Wilcoxon rank-sum test to check whether the

absolute values of the differences vG—vP were greater than for vG—vE

in a single-sided test. A significant P-value indicates that the order of

samples provided by EndoTime is closer to the perfect order. In this

setting, breaking the ties for patient-reported times as described above

yields the largest P-value among all possible resolutions of ties, meaning

that statistical significance may be under-stated but not over-stated

with this approach as the P-value computed is an upper bound for the

P-value that could be obtained if patient-reported times were more

finely resolved. This process was repeated six times, holding out one

panel gene at a time, and P-values Bonferroni-corrected for multiple

testing.

RNA-seq data was examined via Principal Component Analysis in

MATLAB following transformation of raw counts using the rlog func-

tion from the R library DESeq2 v.1.30.1 (Love et al., 2014).

Patient demographics were assessed for normality via Shapiro–Wilk

test. P-values for normally distributed data were then computed either

via unpaired t-test (Data Set I) or P-values against control or 0 losses

were computed via ordinary one-way ANOVA with Dunnett’s multi-

ple comparisons test (Data Sets II and III). P-values for non-normally

distributed data were calculated via Wilcoxon rank-sum test (Data

Set I) or Kruskal–Wallis with Dunn’s multiple comparisons test (Data

Sets II and III).

Results

The EndoTime method was developed using two sample sets of luteal

phase endometrial biopsies. Demographic information for both sample

sets are presented in Supplementary Tables SI and SII. Data Set I con-

sisted of 257 endometrial biopsies assayed by RTq-PCR in nine

batches, out of which 96 were obtained from women with a history of

RPL (defined here as 3 or more consecutive pregnancy losses), 81

750 Lipecki et al.
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were from women with repeated implantation failure (i.e. no positive

pregnancy test following three or more transfers of day 5 blastocysts)

and the remaining 80 biopsies were from control subjects. Refinement

of the EndoTime gene panel resulted in the selection of six temporal

marker genes, several of which are shared in the gene panels of exist-

ing computational methods for endometrial biopsy timing: all six genes

can be found in the ERA panel and GPX3 can be found in the ER-Map

panel. The distribution of expression values for all six panel genes

were found to be comparable between clinical cohorts (P> 0.05,

Wilcoxon rank-sum test, Supplementary Fig. S4). Data Set II consisted

of 36 endometrial biopsies assayed by RTq-PCR and RNA-seq as a

single batch. EndoTime was applied to 407 endometrial biopsies (Data

Set III) to determine if the incidence of ‘mistimed’ or ‘out-of-phase’

samples relates to the recurrence risk of miscarriage. Supplementary

Table SI provides demographic information on all three sample sets.

The distribution of endometrial biopsies relative to the patient-

reported positive urinary ovulation test is shown in Supplementary

Table SII.

The EndoTime method

Timing estimates of endometrial biopsies should ideally rely on tempo-

ral reference profiles of marker genes that span the entire luteal phase

and are free of noise, as illustrated by synthetic data in Fig. 1A, gener-

ated using R via linear and logistic functions between hypothetical val-

ues for time and gene expression. In reality, only a limited number of

biopsies can be sampled (Fig. 1B), and patient-reported days since a

positive urinary ovulation test (rLHþ) will be subject to a degree of er-

ror and noise as simulated in Fig. 1C, thus obscuring the true temporal

expression patterns. We observed that the simulated data show a

very similar pattern to real-world data (Fig. 1D), illustrating the practi-

cal relevance of this theoretical framework. EndoTime aims to mini-

mize the impact of this source of noise by recovering the original

expression patterns and thereby allowing for more accurate estimation

of endometrial timing.

Accomplishing this goal requires us to solve a Chicken and Egg

problem: inferring the correct time point for a given biopsy requires

accurate reference expression profiles, but recovery of these profiles

relies on accurately timed biopsies. An overview of our approach to

solving this problem can be seen in Fig. 2. This is an iterative approach,

using the initial rLHþ time points to model expression profiles while

accounting for uncertainty (Fig. 3A), then updating biopsy timings for

all samples based on the modelled reference profiles (Fig. 3B). These

two steps are iterated, with reference profiles gradually becoming less

noisy as timing estimates are improved in a stepwise manner (Fig. 3C).

The process is repeated until convergence, defined as a minimal over-

all change of sample timings from one iteration to the next.

Modelling temporal expression profiles is achieved using a window-

based approach that considers samples in individual segments of the

time domain and modelling their mean and variance as a normal distri-

bution (Supplementary Fig. S1). The size of the windows is gradually

decreased from iteration to iteration as sharper temporal profiles al-

low for a more detailed model of the reference profiles. The position

of samples inside a window is considered when computing the means

such that samples near the centre of the window have stronger influ-

ence than samples near the edge (Supplementary Fig. S2).

The modelled temporal profiles (Fig. 3A) are used to compute

probability density functions for each sample and each marker

gene, which show how likely each time point is for the given sam-

ple as judged by the reference profile of a single marker gene.

Joint probability density functions are then computed, generated

by a similar process of scaling and binning the density functions for

all six marker genes per sample, followed by calculating the aver-

age density within each bin. The result is a singular ‘pseudo’-den-

sity function for each sample showing likelihood of sample timing

based on the reference profiles for all marker genes (Fig. 3B). The

maxima of these functions are then identified for each sample,

which provide maximum likelihood estimates for the most appro-

priate sample timing. The iterated process of updating the refer-

ence profiles and updating sample timings gradually refines the

reference profiles and increases the certainty in timing estimates

(Fig. 3C, Supplementary Fig. S3).

Validation of EndoTime method

We applied the EndoTime method on Data Set I, comprising of 257

luteal endometrial samples. We used a leave-one-out cross-validation

approach for the set of marker genes used, inferring timings based on

five genes while not using the expression data of the held-out, sixth

gene. We hypothesized that EndoTime estimates will yield sharper,

less noisy temporal profiles for temporally regulated genes. If samples

were ordered merely to fit the data of five genes without inferring the

true order of samples, then the temporal profile for the held-out gene

would not improve. This process was repeated six times, holding out

one gene at a time. We found that the temporal profile of each held-

out gene became tighter after EndoTime with expression values, devi-

ating less from the temporal trajectory when compared to profiles

plotted using patient-reported times (Fig. 4, right and left panels, re-

spectively). This effect was particularly pronounced for CXCL14, DPP4,

and GPX3. The Wilcoxon rank-sum test was used to confirm that the

improvement in temporal expression profiles for three held-out genes

was statistically significant (see Materials and methods; GPX3:

P< 0.005; CXCL14: P< 2.7e�6; DPP4: P< 3.7e�13). The other

genes, though visually appearing tighter, did not test significantly under

the conservative testing our approach, which resolves breaking ties for

patient-reported times in a way that maximizes P-values (see Materials

and methods). These genes may also be less tightly regulated in the lu-

teal phase. We concluded that EndoTime arranged samples on the

time axis in a biologically more accurate manner than patient-reported

times.

Detecting asynchronous samples

While the order of samples computed by EndoTime reduces the vari-

ability in temporal profiles substantially, some individual samples ap-

pear to be outliers. We queried if it was possible to assess the

reliability of estimates on a per-sample basis to enable the automatic

detection of the least reliable samples. As EndoTime computes proba-

bility distributions of timing for each marker gene individually before

aggregation, the procedure could be compared to a voting scheme

where each marker gene has one vote, enabling an assessment of con-

sistency among marker genes. We formulated a score to measure

asynchrony between timing estimates based on individual marker

genes (Fig. 5A). Samples with a high asynchrony score show large

The EndoTime method 751
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Figure 1. Effect of sampling and noise on measured temporal profiles. (A) Ideal expression curves for three artificial genes with infinite

sampling density and without noise. (B) Simulated data as in A but with limited uniform sampling over the time axis more reflective of real-world bi-

opsy availability. (C) Data simulated as in B with random noise added to time points (noise sampled from the normal distribution, mean ¼ 0, SD ¼ 2)

to reflect uncertainty in reporting. (D) Expression measurements of three genes in clinical samples with patient-reported timings. The observed gene

expression patterns are a good match for anticipated patterns simulated in C in terms of noise level and fuzzy appearance of temporal profiles. As

original data are only resolved to full days, samples have been moved randomly on the time axis with an average displacement of 6 h (maximum of

12 h) to make data visualization more comparable with simulated data on a continuous domain.
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discrepancies between marker genes and account for the most outly-

ing samples (Fig. 5B and C, right panel; and Fig. 5D, bottom panel). By

contrast, synchronous samples show consistency among marker genes

(Fig. 5C, left panel; Fig. 5D, top panel), and a good fit to the temporal

profile (Fig. 5B). Thus, EndoTime’s asynchrony score can automatically

inform the user about unreliable estimates, which may either be due

to noise in experimental measurement for the affected samples or re-

flect asynchronous gene expression in the tissue. The user may decide

-∆CT RTq-PCR 

data for six panel 

genes and reported 

LH+ times

Transform reported

timings into 

monotonic

continuous variables

Scale qPCR data 

0 to 1 and perform 

batch effect 

correction

Extrapolate data 

at the edges of 

the time course

Reduce bin size

unless

minimum is reached

Spread samples 

evenly across time 

course, maintaining

sample order

Timing estimates and

asynchrony scores

per sample

Generate sample 

timing density 

curve for 

each panel gene

Generate aggregate

densities across

panel genes

Identify aggregate

curve maximum as

estimated timing

Per Sample:

Main Iteration:

Input

Output

Have timing

estimates changed

much during last

iteration?

Yes

No

Figure 2. Estimation of endometrial sample timings by EndoTime. Pre-processing steps normalize and apply minor batch correction

to –DCT qPCR gene expression data and transform reported sample timings, in LHþ, into a continuous domain suitable for modelling. The bulk of

the computation is an iterative process of binning data, generating an aggregate pseudo-density curve per sample, the maxima of which are selected

as an estimate for the most likely sample timings, and assessment of the relative difference in sample estimates between one iteration and the preced-

ing one. Once the difference in estimates falls below a predefined threshold value, diminishing returns are considered to have been reached and the

modelling process ceases, returning the final sample timing estimates and an associated values for asynchrony, which reflect the degree to which all

six panel genes agree upon estimates.
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to remove such samples from the analysis and refine further the tem-

poral profiles and timing estimates for the remaining samples or, alter-

natively, repeat the cDNA conversion and RTq-PCR assay of samples

deemed asynchronous.

EndoTime can be applied to RNA-seq data

Using EndoTime analysis of the 257 biopsies in Data Set I yielded re-

fined gene expression profiles, arranged according to the estimated

timings. These profiles can subsequently be utilized alongside new
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Figure 3. Illustration of one iteration of the EndoTime modelling process. (A) Computing temporal profiles. Left: Regression curves fit

to expression data for three genes of the timing marker panel. Right: Expression values for three samples from the training data are the basis for re-

evaluating timings of these samples. (B) Temporal profiles learned in A are used to improve time point estimates. For each sample, the likelihood of

each time point is computed, with suggested sample timing represented by peak maxima for each sample. (C) Improved time point estimates provide

improved temporal profiles. Left: Expression data arranged according to patient-reported LHþ. Values for the three samples from A and B are cir-

cled. Right: Expression data re-arranged according to new time estimates obtained in B. Expression curves are visibly tighter and more distinct after

just one iteration. EndoTime repeats this process until convergence.
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sample sets, an application that is particularly useful if these new sets

are not large enough to obtain detailed reference profiles, or if

patient-reported timings are not available, which are necessary to initi-

ate the training process.

Data Set II consisted of 36 endometrial biopsies for which RTq-

PCR as well as RNA-seq data across 33 329 genes was obtained

as well as RTq-PCR data for the EndoTime gene panel. We used

this set to assess if estimates derived from RTq-PCR data would

yield comparable results when EndoTime is applied to measure-

ments of the same six marker genes by RNA-sequencing. This ne-

cessitated normalizing the RNA-seq read counts to make these

comparable to the normalized RTq-PCR values in terms of means

and variances. As reference profiles were fixed by the modelling

exercise for both data types, EndoTime was applied only to carry

out a single estimation step for sample timings without updating

the temporal profiles. Figure 6 demonstrates that RTq-PCR and

RNA-seq time estimates are highly correlated (P¼ 8.6e�10, R2 ¼

0.687). We concluded that meaningful EndoTime estimates can

be obtained from RNA-seq data even if there is not enough data

to re-train reference profiles.

Inaccuracy of reported LH surge times

A fundamental concern towards reliance upon patient-reported

timings provided with clinical biopsies is the potential for inaccuracy.

The endometrium is intrinsically dynamic and mistimed samples could

confound the diagnosis of underlying pathologies. Histological

approaches can provide insights into biopsy timing but require addi-

tional processing of samples and appropriate expertise.

EndoTime analysis of the 257 biopsies in Data Set I revealed a

mean difference between reported and estimated LH timing of

1.29 days, with 48 samples showing an estimated deviance of more

than two days and 19 samples a deviance of more than three days.

One biopsy was estimated to be 6.22 days later than the rLHþ value.

The likelihood of mistiming appeared to be broadly independent of

the temporal state of the tissue (Fig. 7A), with deviations occurring

throughout the luteal phase. This disparity was also seen upon com-

parison of patient-reported timings with histological analysis of the tis-

sue samples, the latter of which were congruent with the predictions

provided by EndoTime (Fig. 7B).

EndoTime captures primary source of

transcriptomic variability in endometrium

Appraisal of the influence of time on transcriptomic variability in

comparison to other potential sources of variation, such as interpa-

tient variability, was achieved by performing principal component

analysis on the RNA-seq data in Data Set II. The two principal

components that explained the largest percentage of variance over-

laid RTq-PCR-based EndoTime estimations (Fig. 8), implying that at

least 44.1% of variance among 33 329 genes measured can be

explained by temporal fluctuations as measured accurately using

just the six genes in the EndoTime panel. We conclude that

EndoTime captures the primary parameter underlying transcrip-

tomic variability in endometrial biopsies obtained during the luteal

phase of the menstrual cycle.

A shift in EndoTime between patient groups could indicate a role

for ‘out-of-phase’ endometrium in driving reproductive failure. To test

whether the clinical phenotype impacts on the performance of

EndoTime, we first examined the expression levels of our six panel

genes in control, RIF and RPL patients in Data Set I. As shown in

CXCL14 CXCL14

DPP4 DPP4

GPX3 GPX3

IGFBP1 IGFBP1

IL2RB IL2RB

SLC15A2 SLC15A2

Figure 4. Method validation by leave-one-out approach.

Left: Expression measurements for panel genes plotted using time

points reported by patients. As original data are only resolved to full

days, samples have been moved randomly on the time axis with an

average displacement of 6 h (maximum of 12 h) to make data visuali-

zation more comparable with EndoTime estimates on continuous

domain. Right: Temporal profile of each gene after using data of the

other five genes to obtain timing estimates for all samples.

Substantially sharper profiles show that EndoTime reveals the true

order of samples more accurately than clinical records.
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DPP4
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CXCL14 DPP4 GPX3 IGFBP1 IL2RB SLC15A2

Figure 5. Quantification of sample asynchrony based on consistency between panel genes. (A) Samples are ranked according to their

asynchrony score. Breakpoint of segmented linear model designates cut-off point for outliers. (B) Gene expression profiles for three timing panel

genes following modelling, with outlying asynchronous samples highlighted. Each sample deemed asynchronous shows discrepant expression values

for at least one gene. (C) Timing likelihood for all panel genes for two synchronous samples (left, top and bottom) and two asynchronous samples

(right, top and bottom). Synchronous samples exhibit curves with maxima conforming towards a singular predicted time point, while asynchronous

samples exhibit contradictory maxima. (D) Time point estimates based on maxima for each panel gene for samples shown in C.
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Supplementary Fig. S4, the distribution of these genes was comparable

between the clinical groups (P> 0.05, Wilcoxon rank-sum test with

Bonferroni multiple testing correction). Likewise, with EndoTime esti-

mates, the difference between reported and estimated LH time and

the asynchrony scores also did not differ between the groups

(Fig. 9A–C). To validate these findings further, we applied EndoTime

to Data Set III, which comprised 407 endometrial biopsies from

women with a history of 0–5 miscarriages. Each miscarriage increases

the risk of further pregnancy loss by �10%, independent of maternal

age (Magnus et al., 2019; Coomarasamy et al., 2020; Kolte et al.,

2021). Hence, this sample set enabled testing whether the prevalence

of ‘mistimed’ or ‘out of phase’ samples increases in function of the re-

currence risk of miscarriage. Again, we found no evidence that

EndoTime estimates are impacted by the likelihood of reproductive

failure (Fig. 9D). As shown in Fig. 9E, neither the frequency of ‘early’

nor ‘late’ endometrial biopsies was affected by the number of previous

pregnancy losses. EndoTime was also not influenced by either age or

BMI (Supplementary Fig. S5).

Discussion

EndoTime utilizes the transcriptomic profiles of an informative panel of

genes to obtain temporal estimates in a continuous domain, rather

than making a categorical classification. This avoids misclassifications

Figure 7. Identification of mistimed samples. (A) Samples shown in order identified by EndoTime (y-axis). EndoTime times shown as smooth

curve. Deviations of reported timings from EndoTime timings shown as coloured horizontal lines. (B) Bright-field imaging with staining by the uNK

marker CD56 for four samples. These images can be used to verify the progress of tissue development as earlier time points are associated with sim-

ple and tubular glands, while corkscrew-shaped glands are associated with biopsies donated during later time points. Samples 2 and 4 appear to be

early samples, while Sample 1 and 3 are late samples. EndoTime estimates are consistent with this. Reported timings agree for Sample 2 and 3 but

are discrepant for Sample 1 and 4 by about four days. eLHþ, estimated LHþ.

RTq-PCR

Figure 6. Correlation of predicted time points from RTq-

PCR data versus predictions from RNA-seq data of six

panel genes. eLHþ, estimated LHþ.
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that are likely when samples are close to the temporal threshold be-

tween different categorical phases of the cycle and increases the reso-

lution of temporal analyses. Given that two of the existing,

transcriptomics-based methods partition samples into just three cate-

gories, a misclassification into the neighbouring category implies sub-

stantially altered biological interpretation. We have shown the

accuracy of EndoTime by leave-one-out validation, which involves re-

moving one panel gene at a time and assessing the sharpening of the

temporal profile of the held-out gene. In all cases, the results were

comparable to those when using the entire panel, with only minimal

increased noise in the estimated timings.

The combined advantages of measuring only six genes alongside

freely available software mean that EndoTime minimizes the obstacles

for wide adoption. EndoTime enables any measurements obtained

from endometrial biopsies to be interpreted in relation to precise sam-

ple timing, thereby revealing the true temporal patterns much more

accurately.

Importantly, the model training is part of the EndoTime software,

enabling the application of EndoTime in other settings, for example

with modified sets of panel genes or in different patient cohorts. In

fact, EndoTime may be applicable to other tissues and other biological

processes if the panel genes are chosen accordingly. Temporal pat-

terns in the current panel genes are limited to monotonic shapes, ei-

ther continuously increasing (five genes) or continuously decreasing

(one gene) as these are the patterns found for most temporally vari-

able genes in this tissue. Monotonic shapes are most informative as

each expression level is only seen once across time, but the EndoTime

methodology can be used for any temporal patterns. We believe that

EndoTime has a range of applications in research settings as well as

broad potential for clinical application as well.

EndoTime provides a good degree of transparency to the user,

with each panel gene contributing its own estimate of sample tim-

ing, which are then aggregated in a single final time estimate.

Estimates based on individual genes that appear inconsistent are

reported to the user as asynchrony between panel genes, providing

a measure of reliability and highlighting estimates with low confi-

dence. Transcriptomic measurements in an individual biopsy sample

can be plotted against the normal temporal profiles identified by

EndoTime, providing a direct visual representation of the evidence

for synchrony or asynchrony. Asynchrony may arise due to both

technical errors and/or biological determinants. Although there

was no observable correlation between timing errors and any of

the three clinical groups that comprise Data Set I, future work

could further investigate correlations of asynchrony with reproduc-

tive pathologies in larger data sets. Notably in this study, the con-

cept of a biopsy being considered as ‘asynchronous’ relates to the

relative congruence of all panel genes towards a singular estimated

timepoint (Sebastian-Leon et al., 2018).

EndoTime is able to provide timing estimations of greater accuracy

as the size of contributing batches increases due to improved batch ef-

fect correction in the underlying transcriptomic data used for model-

ling. Samples in this study were obtained exclusively between 2 and

6 p.m., which limits the degree to which timing estimations might be

influenced by fluctuations imposed by the circadian clock, such as

those associated with PER2 (Uchikawa et al., 2011; Muter et al.,

2015). EndoTime’s accuracy might be improved via addition of an en-

dometrial circadian gene to the panel and subsequent adjustments to

the model should allow for greater timing resolution accounts for

these daily rhythms. Of the six marker genes utilized, four are notably

associated with the epithelium, implying that EndoTime estimates are

mostly informed by the epithelial compartment of the endometrium.

By transforming RNA-seq measurements to match the distribution

of RTq-PCR data prior to modelling via EndoTime, estimates can be

obtained that are highly congruent. This conclusion was supported fur-

ther upon projecting estimated timings over the principal component

analysis of RNA-seq data, showing that over 44% of transcriptomic

variance between samples can be explained as temporal fluctuations in

gene expression. This offers the possibility of applying EndoTime to

the transformation and timing estimation of endometrial RNA-seq

data. This should broaden the application of EndoTime and identify ad-

ditional temporally sensitive genes that might further improve the gene

panel in the future. This may also provide a foundation for dissecting

normal temporal changes from changes related to patient cohorts. In

addition, it creates potential for developing methods for adjusting the

timing of RNA-seq data sets computationally to make these more

comparable across patient cohorts.

In summary, EndoTime is a novel open access software which

advances the process of timing luteal phase endometrial biopsies along

a continuous scale, presenting opportunities for further improvements

in terms of its generalization across the entire endometrium.

EndoTime’s application to a wider range of transcriptomic

−60

−40
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40

−40 −20 0 20 40 60 80
PC1: 31.00%
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Figure 8. EndoTime estimates capture largest single

source of variability in endometrial transcriptomes. PCA

performed on 33 329-dimensional RNA-seq data. Colours indicate

EndoTime timings inferred from just six genes which are consistent

with sample positions in PC 1 and 2 which capture 44.1% of tran-

scriptomic variation. eLHþ, estimated LHþ.
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measurements and its timing resolution presents potentially far-

reaching research and clinical applications.

Supplementary data
Supplementary data are available at Human Reproduction online.

Data availability

The RNA-seq data are available in the Gene Expression Omnibus un-

der accession GSE180485. The RTq-PCR data are available in the

GitHub repository for the EndoTime software at https://www.github.

com/AE-Mitchell/EndoTime.
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