31 research outputs found

    Prognostic role of clusterin in resected adenocarcinomas of the lung

    Get PDF
    Rationale Clusterin expression may change in various human malignancies, including lung cancer. Patients with resectable non-small cell lung cancer (NSCLC), including adenocarcinoma, have a poor prognosis, with a relapse rate of 30\u201350% within 5 years. Nuclear factor kB (Nf-kB) is an intracellular protein involved in the initiation and progression of several human cancers, including the lung. Objectives We investigate the role of clusterin and Nf-kB expression in predicting the prognosis of patients with early-stage surgically resected adenocarcinoma of the lung. Findings The level of clusterin gradually decreased from well-differentiated to poorly differentiated adenocarcinomas. Clusterin expression was significantly higher in patients with low-grade adenocarcinoma, in early-stage disease and in women. Clusterin expression was inversely related to relapse and survival in both univariate and multivariate analyses. Finally, we observed an inverse correlation between Nf-kB and clusterin. Conclusions Clusterin expression represents an independent prognostic factor in surgically resected lung adenocarcinoma and was proven to be a useful biomarker for fewer relapses and longer survival in patients in the early stage of disease. The inverse correlation between Nf-kB and clusterin expression confirm the previously reported role of clusterin as potent down regulator of Nf-kB

    Innate Sensing of HIV-Infected Cells

    Get PDF
    Cell-free HIV-1 virions are poor stimulators of type I interferon (IFN) production. We examined here how HIV-infected cells are recognized by plasmacytoid dendritic cells (pDCs) and by other cells. We show that infected lymphocytes are more potent inducers of IFN than virions. There are target cell-type differences in the recognition of infected lymphocytes. In primary pDCs and pDC-like cells, recognition occurs in large part through TLR7, as demonstrated by the use of inhibitors and by TLR7 silencing. Donor cells expressing replication-defective viruses, carrying mutated reverse transcriptase, integrase or nucleocapsid proteins induced IFN production by target cells as potently as wild-type virus. In contrast, Env-deleted or fusion defective HIV-1 mutants were less efficient, suggesting that in addition to TLR7, cytoplasmic cellular sensors may also mediate sensing of infected cells. Furthermore, in a model of TLR7-negative cells, we demonstrate that the IRF3 pathway, through a process requiring access of incoming viral material to the cytoplasm, allows sensing of HIV-infected lymphocytes. Therefore, detection of HIV-infected lymphocytes occurs through both endosomal and cytoplasmic pathways. Characterization of the mechanisms of innate recognition of HIV-infected cells allows a better understanding of the pathogenic and exacerbated immunologic events associated with HIV infection

    Cell death during sepsis: integration of disintegration in the inflammatory response to overwhelming infection

    Full text link
    Sepsis is a major health problem and a leading cause of death worldwide. In recent years, a crescendo of attention has been directed to the mechanisms of cell death that develop during this disease, since these are viewed as important contributors to the proinflammatory and anti-inflammatory responses associated with poor outcome. Here we discuss mechanisms of cell death evident severe bacterial infection and sepsis including necrosis, apoptosis, pyroptosis, and extracellular trap-associated neutrophil death, with a particular emphasis on lymphocyte apoptosis and its contribution to the immunosuppressed phenotype of late sepsis. Individual bacterial pathogens express virulence factors that modulate cell death pathways and influence the sepsis phenotype. A greater knowledge of cell death pathways in sepsis informs the potential for future therapies designed to ameliorate immune dysfunction in this syndrome
    corecore