1,782 research outputs found
Strong lensing in the MareNostrum Universe II: scaling relations and optical depths
The strong lensing events that are observed in compact clusters of galaxies
can, both statistically and individually, return important clues about the
structural properties of the most massive structures in the Universe.
Substantial work is ongoing in order to understand the degree of similarity
between the lensing cluster population and the population of clusters as a
whole, with members of the former being likely more massive, compact, and
substructured than members of the latter. In this work we exploit synthetic
clusters extracted from the {\sc MareNostrum Universe} cosmological simulation
in order to estimate the correlation between the strong lensing efficiency and
other bulk properties of lensing clusters, such as the virial mass and the
bolometric X-ray luminosity. We found that a positive correlation exist between
all these quantities, with the substantial scatter being smaller for the
luminosity-cross section relation. We additionally used the relation between
the lensing efficiency and the virial mass in order to construct a synthetic
optical depth that agrees well with the true one, while being extremely faster
to be evaluated. We finally estimated what fraction of the total giant arc
abundance is recovered when galaxy clusters are selected according to their
dynamical activity or their X-ray luminosity. Our results show that there is a
high probability for high-redshift strong lensing clusters to be substantially
far away from dynamical equilibrium, and that of the total amount of
giant arcs are lost if looking only at very X-ray luminous objects.Comment: 15 pages, 10 figures. Accepted by A&
Age-related differences in pointing accuracy in familiar and unfamiliar environments
This study aimed to investigate age-related differences in spatial mental representations of familiar and unfamiliar places. Nineteen young adults (aged 18\u201323) and 19 older adults (aged 60\u201374), all living in the same Italian town, completed a set of visuospatial measures and then pointed in the direction of familiar landmarks in their town and in the direction of landmarks in an unknown environment studied on a map. Results showed that older adults were less accurate in the visuospatial tasks and in pointing at landmarks in an unfamiliar environment, but performed as well as the young adults when pointing to familiar places. Pointing performance correlated with visuospatial tests accuracy in both familiar and unfamiliar environments, while only pointing in an unknown environment correlated with visuospatial working memory (VSWM).
The spatial representation of well-known places seems to be well preserved in older adults (just as well as in young adults), while it declines for unfamiliar environments. Spatial abilities sustain the mental representations of both familiar and unfamiliar environments, while the support of VSWM resources is only needed for the latter
Selecting background galaxies in weak-lensing analysis of galaxy clusters
In this paper, we present a new method to select the faint, background
galaxies used to derive the mass of galaxy clusters by weak lensing.
The method is based on the simultaneous analysis of the shear signal, that
should be consistent with zero for the foreground, unlensed galaxies, and of
the colors of the galaxies: photometric data from the COSMic evOlution Survey
are used to train the color selection. In order to validate this methodology,
we test it against a set of state-of-the-art image simulations of mock galaxy
clusters in different redshift [] and mass
[] ranges, mimicking medium-deep multicolor
imaging observations (e.g. SUBARU, LBT).
The performance of our method in terms of contamination by unlensed sources
is comparable to a selection based on photometric redshifts, which however
requires a good spectral coverage and is thus much more observationally
demanding. The application of our method to simulations gives an average ratio
between estimated and true masses of . As a further test,
we finally apply our method to real data, and compare our results with other
weak lensing mass estimates in the literature: for this purpose we choose the
cluster Abell 2219 (), for which multi-band (BVRi) data are publicly
available.Comment: MNRAS, Accepted 2016 February 2
Does repetitive thinking mediate the relationship between self-compassion and competition anxiety in athletes?
Due to the promising effect of self-compassion interventions in sports, it was the main goal of this study to investigate, if two aspects of repetitive thinking, worry and rumination, mediate the possible relation of self-compassion on competition anxiety of women and men in different types of sport (team- vs. individual sport). Two hundred and ninety-three athletes participated, 127 were soccer players, 103 handball players, and 63 athletes practiced an individual sport. They completed four questionnaires of sport competition anxiety, rumination, worry, and self-compassion. The results showed that for both rumination and worry, women had higher values than men and individual athletes had higher values than athletes from team sport. Women had higher values in the negative scale of self-compassion compared to men, and individual athletes and handball players had lower values than soccer players. The result of a mediation analysis demonstrated that the relation between the negative scale of self-compassion and the somatic anxiety and concern aspect of competition anxiety was mediated by worry
The influence of personality traits and facets on visuo-spatial task performance and self-assessed visuo-spatial inclinations in young and older adults.
Aims Personality traits are suggested to influence adults\u2019 cognitive performance, but little is known about their association with visuo-spatial competence, in terms of those visuo-spatial abilities and inclinations crucial to remaining autonomous, especially with aging. This study newly investigated whether, and to what extent, major traits and narrower facets of personality influence young and older adults\u2019 performance in the so-called objective visuo-spatial abilities (mental rotation and visuo-spatial working memory [VSWM]), and self-assessed visuo-spatial inclinations (pleasure and anxiety in exploring places). Method Seventy young adults (18\u201335 years old) and 70 older adults (65\u201375 years old) completed the Big-Five questionnaire, objective rotation and VSWM tasks, and spatial self-assessments on pleasure and anxiety in exploring places. Results Hierarchical regression models confirmed that age negatively predicted the variance in objective visuo-spatial tasks, but not in self-assessed visuo-spatial inclinations, while only the latter were slightly influenced by gender (in favor of men). Further, both objective visuospatial abilities (albeit modestly) and self-assessed visuo-spatial inclinations were predicted by higher Conscientiousness. The latter were also predicted by higher Emotional Stability. Finally, a better objective visuo-spatial performance was explained (again modestly) by lower Dynamism and Politeness, and higher Emotion Control, while higher Perseverance, Emotion Control and Cooperativeness explained a moderate part of the variance in the positive self-assessed visuo-spatial inclinations. Conclusions Our findings indicate that, beyond age and gender, some personality traits and facets predict self-assessed visuo-spatial inclinations to a larger extent than objective visuo-spatial performance. These results are discussed within the spatial cognition and aging framework
Decarbonizing the cold chain: Long-haul refrigerated deliveries with on-board photovoltaic energy integration
Decarbonizing the cold chain is a priority for sustainability due to the increasing demand for chilled/frozen food and pharmaceutics. Refrigerated transport requires additional fuel for refrigeration other than for traction. Photovoltaic panels on the vehicle rooftop, a battery bank, and a power conversion system can replace the diesel engine driving the transport refrigerated unit. In long-haul deliveries, vehicles cross zones with different climate conditions, which affect both refrigeration requirements and photovoltaic energy conversion. Mandatory driver\u2019s breaks and rest also affect delivery timing and energy consumption. A multiperiod, multizone optimization model is developed to size the onboard photovoltaic system, based on features of the delivery tour. The model is applied to a palletized chilled food delivery from North-Eastern Italy, showing a payback time of around four years, which can drop under two years for expected reduction of component costs. Economic and environmental performances can be increased by also allowing refrigerated products on-board during the return journey, leading to more fuel savings. Photovoltaic-integrated long-haul delivery for frozen products is not convenient at current market costs. Different climate conditions are tested, showing the model ability to act as a decision support tool to foster renewable energy penetration into the cold chain
The strongest gravitational lenses: I. The statistical impact of cluster mergers
For more than a decade now, it has been controversial whether or not the high
rate of giant gravitational arcs and the largest observed Einstein radii are
consistent with the standard cosmological model. Recent studies indicate that
mergers provide an efficient mechanism to substantially increase the
strong-lensing efficiency of individual clusters. Based on purely semi-analytic
methods, we investigated the statistical impact of cluster mergers on the
distribution of the largest Einstein radii and the optical depth for giant
gravitational arcs of selected cluster samples. Analysing representative
all-sky realizations of clusters at redshifts z < 1 and assuming a constant
source redshift of z_s = 2.0, we find that mergers increase the number of
Einstein radii above 10 arcsec (20 arcsec) by ~ 35 % (~ 55 %). Exploiting the
tight correlation between Einstein radii and lensing cross sections, we infer
that the optical depth for giant gravitational arcs with a length-to-width
ratio > 7.5 of those clusters with Einstein radii above 10 arcsec (20 arcsec)
increases by ~ 45 % (85 %). Our findings suggest that cluster mergers
significantly influence in particular the statistical lensing properties of the
strongest gravitational lenses. We conclude that semi-analytic studies must
inevitably take these events into account before questioning the standard
cosmological model on the basis of the largest observed Einstein radii and the
statistics of giant gravitational arcs.Comment: 23 pages, 18 figures; accepted for publication in Astronomy and
Astrophysics; v2: minor corrections (added clarifying comments; added Fig.
19) to match the accepted versio
Comparison of an X-ray selected sample of massive lensing clusters with the MareNostrum Universe LCDM simulation
A long-standing problem of strong lensing by galaxy clusters regards the
observed high rate of giant gravitational arcs as compared to the predictions
in the framework of the "standard" cosmological model. Recently, few other
inconsistencies between theoretical expectations and observations have been
claimed which regard the large size of the Einstein rings and the high
concentrations of few clusters with strong lensing features. All of these
problems consistently indicate that observed galaxy clusters may be
gravitational lenses stronger than expected. We use clusters extracted from the
MareNostrum Universe to build up mock catalogs of galaxy clusters selected
through their X-ray flux. We use these objects to estimate the probability
distributions of lensing cross sections, Einstein rings, and concentrations for
the sample of 12 MACS clusters at presented in Ebeling et al. (2007)
and discussed in Zitrin et al. (2010). We find that simulated clusters produce
less arcs than observed clusters do. The medians of the
distributions of the Einstein ring sizes differ by between
simulations and observations. We estimate that, due to cluster triaxiality and
orientation biases affecting the lenses with the largest cross sections, the
concentrations of the individual MACS clusters inferred from the lensing
analysis should be up to a factor of larger than expected from the
CDM model. The arc statistics, the Einstein ring, and the
concentration problems in strong lensing clusters are mitigated but not solved
on the basis of our analysis. Nevertheless, due to the lack of redshifts for
most of the multiple image systems used for modeling the MACS clusters, the
results of this work will need to be verified with additional data. The
upcoming CLASH program will provide an ideal sample for extending our
comparison (abridged).Comment: 11 pages, 9 figures, accepted for publication on A&
Strong lensing in the MareNostrum Universe: biases in the cluster lens population
Strong lensing is one of the most direct probes of the mass distribution in
the inner regions of galaxy clusters. It can be used to constrain the density
profiles and to measure the mass of the lenses. Moreover, the abundance of
strong lensing events can be used to constrain the structure formation and the
cosmological parameters through the so-called "arc-statistics" approach.
However, several issues related to the usage of strong lensing clusters in
cosmological applications are still controversial, leading to the suspect that
several biases may affect this very peculiar class of objects. With this study
we aim at better understanding the properties of galaxy clusters which can
potentially act as strong lenses. We do so by investigating the properties of a
large sample of galaxy clusters extracted from the N-body/hydrodynamical
simulation MareNostrum Universe. We explore the correlation between the cross
section for lensing and many properties of clusters, like the mass, the
three-dimensional and projected shapes, their concentrations, the X-ray
luminosity and the dynamical activity. We find that the probability of strong
alignments between the major axes of the lenses and the line of sight is a
growing function of the lensing cross section. In projection, the strong lenses
appear rounder within R200, but we find that their cores tend to be more
elliptical as the lensing cross section increases. We also find that the
cluster concentrations estimated from the projected density profiles tend to be
biased high. The X-ray luminosity of strong lensing clusters is higher than
that of normal lenses of similar mass and redshift. This is particular
significant for the least massive lenses. Finally, we find that the strongest
lenses generally exhibit an excess of kinetic energy within the virial radius,
indicating that they are more dynamically active than usual clusters.Comment: 22 pages, 18 figures, accepted for publication on A&
Path Learning in Individuals With Down Syndrome: The Floor Matrix Task and the Role of Individual Visuo-Spatial Measures
Environment learning is essential in everyday life. In individuals with Down syndrome (DS), this skill has begun to be examined using virtual exploration. Previous studies showed that individuals with DS can learn and remember paths in terms of sequences of turns and straight stretches, albeit with some difficulty, and this learning is supported by their cognitive abilities. This study further investigates environment learning in the DS population, newly examining their ability to learn a path from actual movements, and to learn increasingly long paths, and how their performance relates to their visuo-spatial abilities and everyday spatial activities. A group of 30 individuals with DS and 30 typically-developing (TD) children matched for receptive vocabulary performed a 4
7 4 Floor Matrix task in a grid comprising 16 squares (total area 2.3
7 2.3 meters). The task involved repeating increasingly long sequences of steps by actually moving in the grid. The sequences were presented in two learning conditions, called Observation (when participants watched the experimenter\u2019s moves), or Map (when they were shown a map reproducing the path). Several visuo-spatial measures were also administered. The results showed a clear difference between the two groups\u2019 performance in the individual visuo-spatial measures. In the Floor Matrix task, after controlling for visuo-spatial reasoning ability, both groups benefited to the same degree from the Observation condition vis-\ue0-vis the Map condition, and no group differences emerged. In the group with DS, visuo-spatial abilities were more predictive of performance in the Floor Matrix task in the Observation condition than in the Map condition. The same was true of the TD group, but this difference was much less clear-cut. The visuo-spatial working memory and visualization tasks were the strongest predictors of Floor Matrix task performance. Finally, the group with DS showed a significant relation between Floor Matrix task performance in the Observation condition and everyday spatial activity. These results enlarge on what we know about path learning in individuals with DS and its relation to their visuo-spatial abilities. These findings are discussed within the frame of spatial cognition and the atypical development domain
- …