14 research outputs found

    Smoking and incidence of glaucoma The SUN Cohort

    Get PDF
    Abstract Smoking is a serious global public health concern that has been related to many chronic diseases. However, the effect of smoking on eye disorders has been less studied. The aim of this cohort study was to assess the association between current tobacco smokers and the risk of developing glaucoma and furthermore to evaluate the relationship between passive or former smokers and glaucoma. In this prospective and dynamic cohort, 16,797 participants initially who were found not to have glaucoma were followed up for a median of 8.5 years. Validated data on lifestyle, including tobacco consumption, were assessed at baseline. Information about new diagnosis of glaucoma was collected by follow-up questionnaires every 2 years. The outcome was the incidence of self-reported glaucoma during the follow-up. A subsample was used to validate the glaucoma diagnosis. During the 8.5 years of follow-up, 184 new glaucoma cases were identified. Current smokers had a significantly higher risk of glaucoma compared to participants who had never smoked after controlling for potential confounders (Hazard ratio [HR] 1.88 [95% coefficient interval (CI): 1.26-2.81]; P = 0.002). A nonsignificant increased risk was found among former smokers (HR 1.27 [95% CI: 0.88-1.82]; P = 0.198). When we assessed the exposure as per the number of cigarette pack-years, a dose-response relationship between pack-years and the risk of glaucoma was found (HR for the 5th quintile versus the 1st quintile: 1.70 [95% IC: 1.10-2.64], P for trend, 0.009). However, no relationship was found between passive smokers and glaucoma. ]; P = 0.189). Our results suggest a direct association between current smokers and the incidence of glaucoma. In particular, this association was related to the number of pack-years, which was not found in the case of former smokers nor in the case of passive smokers. Abbreviations: IOP = intraocular pressure, POAG = primary open angle glaucoma, SUN = Seguimiento Universidad de Navarra

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Kaon femtoscopy in Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    We present the results of three-dimensional femtoscopic analyses for charged and neutral kaons recorded by ALICE in Pb-Pb collisions at sNN−−−√ = 2.76 TeV. Femtoscopy is used to measure the space-time characteristics of particle production from the effects of quantum statistics and final-state interactions in two-particle correlations. Kaon femtoscopy is an important supplement to that of pions because it allows one to distinguish between different model scenarios working equally well for pions. In particular, we compare the measured 3D kaon radii with a purely hydrodynamical calculation and a model where the hydrodynamic phase is followed by a hadronic rescattering stage. The former predicts an approximate transverse mass (mT) scaling of source radii obtained from pion and kaon correlations. This mT scaling appears to be broken in our data, which indicates the importance of the hadronic rescattering phase at LHC energies. A kT scaling of pion and kaon source radii is observed instead. The time of maximal emission of the system is estimated using the three-dimensional femtoscopic analysis for kaons. The measured emission time is larger than that of pions. Our observation is well supported by the hydrokinetic model predictions

    Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76$ TeV

    No full text
    In ultrarelativistic heavy-ion collisions, the event-by-event variation of the elliptic flow v2v_2 reflects fluctuations in the shape of the initial state of the system. This allows to select events with the same centrality but different initial geometry. This selection technique, Event Shape Engineering, has been used in the analysis of charge-dependent two- and three-particle correlations in Pb-Pb collisions at sNN=2.76\sqrt{s_{_{\rm NN}}} =2.76 TeV. The two-particle correlator ⟹cos⁥(φα−φÎČ)⟩\langle \cos(\varphi_\alpha - \varphi_\beta) \rangle, calculated for different combinations of charges α\alpha and ÎČ\beta, is almost independent of v2v_2 (for a given centrality), while the three-particle correlator ⟹cos⁥(φα+φÎČ−2Κ2)⟩\langle \cos(\varphi_\alpha + \varphi_\beta - 2\Psi_2) \rangle scales almost linearly both with the event v2v_2 and charged-particle pseudorapidity density. The charge dependence of the three-particle correlator is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity violating effect of the strong interaction. However, its measured dependence on v2v_2 points to a large non-CME contribution to the correlator. Comparing the results with Monte Carlo calculations including a magnetic field due to the spectators, the upper limit of the CME signal contribution to the three-particle correlator in the 10-50% centrality interval is found to be 26-33% at 95% confidence level

    Constraining the magnitude of the chiral magnetic effect with event shape engineering in Pb–Pb collisions at √sNN=2.76 TeV

    No full text
    In ultrarelativistic heavy-ion collisions, the event-by-event variation of the elliptic flow v2 reflects fluctuations in the shape of the initial state of the system. This allows to select events with the same centrality but different initial geometry. This selection technique, Event Shape Engineering, has been used in the analysis of charge-dependent two- and three-particle correlations in Pb–Pb collisions at √sNN=2.76 TeV. The two-particle correlator 〈cos⁥(φα−φÎČ)〉, calculated for different combinations of charges α and ÎČ, is almost independent of v2 (for a given centrality), while the three-particle correlator 〈cos⁥(φα+φÎČ−2Κ2)〉 scales almost linearly both with the event v2 and charged-particle pseudorapidity density. The charge dependence of the three-particle correlator is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity violating effect of the strong interaction. However, its measured dependence on v2 points to a large non-CME contribution to the correlator. Comparing the results with Monte Carlo calculations including a magnetic field due to the spectators, the upper limit of the CME signal contribution to the three-particle correlator in the 10–50% centrality interval is found to be 26–33% at 95% confidence level

    ESICM LIVES 2016: part two : Milan, Italy. 1-5 October 2016.

    Get PDF
    Meeting abstrac

    Production of ÎŁ(1385)± and Ξ(1530)0 in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    The transverse momentum distributions of the strange and double-strange hyperon resonances (ÎŁ(1385)±, Ξ(1530)0) produced in p-Pb collisions at sNN−−−√=5.02 TeV were measured in the rapidity range −0.5<yCMS<0 for event classes corresponding to different charged-particle multiplicity densities, ⟹dNch/dηlab⟩. The mean transverse momentum values are presented as a function of ⟹dNch/dηlab⟩, as well as a function of the particle masses and compared with previous results on hyperon production. The integrated yield ratios of excited to ground-state hyperons are constant as a function of ⟹dNch/dηlab⟩. The equivalent ratios to pions exhibit an increase with ⟹dNch/dηlab⟩, depending on their strangeness content

    Erratum to: Insight into particle production mechanisms via angular correlations of identified particles in pp collisions at √s = 7 TeV

    No full text
    We have identified a mistake in how Fig. 1 is referenced in the text of the article Eur. Phys. J. C 77 (2017) no. 8, 569 which affected three paragraphs of the results section. The corrected three paragraphs as well as the unmodified accompanying figure are reproduced in this document with the correct labeling. In addition, an editing issue led to a missing acknowledgements section. The missing section is reproduced at the end of this document in the manner in which it should have appeared in the published article

    Measurement of D-meson production at mid-rapidity in pp collisions at √s = 7 TeV

    No full text
    The production cross sections of the prompt charmed mesons D0, D+, D∗+ and D+s were measured at mid-rapidity in proton-proton collisions at a centre-of-mass energy s√=7 TeV with the ALICE detector at the Large Hadron Collider (LHC). D mesons were reconstructed from their decays D0→K−π+, D+→K−π+π+, D∗+→D0π+, D+s→ϕπ+→K−K+π+, and their charge conjugates. With respect to previous measurements in the same rapidity region, the coverage in transverse momentum (pT) is extended and the uncertainties are reduced by a factor of about two. The accuracy on the estimated total ccÂŻÂŻ production cross section is likewise improved. The measured pT-differential cross sections are compared with the results of three perturbative QCD calculations
    corecore