434 research outputs found

    Current strategies for treatment of intervertebral disc degeneration: substitution and regeneration possibilities

    Get PDF
    Background: Intervertebral disc degeneration has an annual worldwide socioeconomic impact masked as low back pain of over 70 billion euros. This disease has a high prevalence over the working age class, which raises the socioeconomic impact over the years. Acute physical trauma or prolonged intervertebral disc mistreatment triggers a biochemical negative tendency of catabolic-anabolic balance that progress to a chronic degeneration disease. Current biomedical treatments are not only ineffective in the long-run, but can also cause degeneration to spread to adjacent intervertebral discs. Regenerative strategies are desperately needed in the clinics, such as: minimal invasive nucleus pulposus or annulus fibrosus treatments, total disc replacement, and cartilaginous endplates decalcification. Main Body: Herein, it is reviewed the state-of-the-art of intervertebral disc regeneration strategies from the perspective of cells, scaffolds, or constructs, including both popular and unique tissue engineering approaches. The premises for cell type and origin selection or even absence of cells is being explored. Choice of several raw materials and scaffold fabrication methods are evaluated. Extensive studies have been developed for fully regeneration of the annulus fibrosus and nucleus pulposus, together or separately, with a long set of different rationales already reported. Recent works show promising biomaterials and processing methods applied to intervertebral disc substitutive or regenerative strategies. Facing the abundance of studies presented in the literature aiming intervertebral disc regeneration it is interesting to observe how cartilaginous endplates have been extensively neglected, being this a major source of nutrients and water supply for the whole disc. Conclusion: Severalinnovative avenues for tackling intervertebral disc degeneration are being reported â from acellular to cellular approaches, but the cartilaginous endplates regeneration strategies remain unaddressed. Interestingly, patient-specific approaches show great promise in respecting patient anatomy and thus allow quicker translation to the clinics in the near future.The authors would like to acknowledge the support provided by the Portuguese Foundation for Science and Technology (FCT) through the project EPIDisc (UTAP-EXPL/BBBECT/0050/2014), funded in the Framework of the “International Collaboratory for Emerging Technologies, CoLab”, UT Austin|Portugal Program. The FCT distinctions attributed to J. Miguel Oliveira (IF/00423/2012 and IF/01285/ 2015) and J. Silva-Correia (IF/00115/2015) under the Investigator FCT program are also greatly acknowledged.info:eu-repo/semantics/publishedVersio

    Impact of Safety-Related Dose Reductions or Discontinuations on Sustained Virologic Response in HCV-Infected Patients: Results from the GUARD-C Cohort.

    Get PDF
    BACKGROUND: Despite the introduction of direct-acting antiviral agents for chronic hepatitis C virus (HCV) infection, peginterferon alfa/ribavirin remains relevant in many resource-constrained settings. The non-randomized GUARD-C cohort investigated baseline predictors of safety-related dose reductions or discontinuations (sr-RD) and their impact on sustained virologic response (SVR) in patients receiving peginterferon alfa/ribavirin in routine practice. METHODS: A total of 3181 HCV-mono-infected treatment-naive patients were assigned to 24 or 48 weeks of peginterferon alfa/ribavirin by their physician. Patients were categorized by time-to-first sr-RD (Week 4/12). Detailed analyses of the impact of sr-RD on SVR24 (HCV RNA <50 IU/mL) were conducted in 951 Caucasian, noncirrhotic genotype (G)1 patients assigned to peginterferon alfa-2a/ribavirin for 48 weeks. The probability of SVR24 was identified by a baseline scoring system (range: 0-9 points) on which scores of 5 to 9 and <5 represent high and low probability of SVR24, respectively. RESULTS: SVR24 rates were 46.1% (754/1634), 77.1% (279/362), 68.0% (514/756), and 51.3% (203/396), respectively, in G1, 2, 3, and 4 patients. Overall, 16.9% and 21.8% patients experienced ≥1 sr-RD for peginterferon alfa and ribavirin, respectively. Among Caucasian noncirrhotic G1 patients: female sex, lower body mass index, pre-existing cardiovascular/pulmonary disease, and low hematological indices were prognostic factors of sr-RD; SVR24 was lower in patients with ≥1 vs. no sr-RD by Week 4 (37.9% vs. 54.4%; P = 0.0046) and Week 12 (41.7% vs. 55.3%; P = 0.0016); sr-RD by Week 4/12 significantly reduced SVR24 in patients with scores <5 but not ≥5. CONCLUSIONS: In conclusion, sr-RD to peginterferon alfa-2a/ribavirin significantly impacts on SVR24 rates in treatment-naive G1 noncirrhotic Caucasian patients. Baseline characteristics can help select patients with a high probability of SVR24 and a low probability of sr-RD with peginterferon alfa-2a/ribavirin.This study was sponsored by F. Hoffmann-La Roche Ltd, Basel, Switzerland. Support for third-party writing assistance for this manuscript, furnished by Blair Jarvis MSc, ELS, of Health Interactions, was provided by F. Hoffmann-La Roche Ltd, Basel, Switzerland

    Transient exposure to low levels of insecticide affects metabolic networks of honeybee larvae

    Get PDF
    The survival of a species depends on its capacity to adjust to changing environmental conditions, and new stressors. Such new, anthropogenic stressors include the neonicotinoid class of crop-protecting agents, which have been implicated in the population declines of pollinating insects, including honeybees (Apis mellifera). The low-dose effects of these compounds on larval development and physiological responses have remained largely unknown. Over a period of 15 days, we provided syrup tainted with low levels (2 µg/L−1) of the neonicotinoid insecticide imidacloprid to beehives located in the field. We measured transcript levels by RNA sequencing and established lipid profiles using liquid chromatography coupled with mass spectrometry from worker-bee larvae of imidacloprid-exposed (IE) and unexposed, control (C) hives. Within a catalogue of 300 differentially expressed transcripts in larvae from IE hives, we detect significant enrichment of genes functioning in lipid-carbohydrate-mitochondrial metabolic networks. Myc-involved transcriptional response to exposure of this neonicotinoid is indicated by overrepresentation of E-box elements in the promoter regions of genes with altered expression. RNA levels for a cluster of genes encoding detoxifying P450 enzymes are elevated, with coordinated downregulation of genes in glycolytic and sugar-metabolising pathways. Expression of the environmentally responsive Hsp90 gene is also reduced, suggesting diminished buffering and stability of the developmental program. The multifaceted, physiological response described here may be of importance to our general understanding of pollinator health. Muscles, for instance, work at high glycolytic rates and flight performance could be impacted should low levels of this evolutionarily novel stressor likewise induce downregulation of energy metabolising genes in adult pollinators

    Essential Domains of Anaplasma phagocytophilum Invasins Utilized to Infect Mammalian Host Cells

    Get PDF
    Anaplasma phagocytophilum causes granulocytic anaplasmosis, an emerging disease of humans and domestic animals. The obligate intracellular bacterium uses its invasins OmpA, Asp14, and AipA to infect myeloid and non-phagocytic cells. Identifying the domains of these proteins that mediate binding and entry, and determining the molecular basis of their interactions with host cell receptors would significantly advance understanding of A. phagocytophilum infection. Here, we identified the OmpA binding domain as residues 59 to 74. Polyclonal antibody generated against a peptide spanning OmpA residues 59 to 74 inhibited A. phagocytophilum infection of host cells and binding to its receptor, sialyl Lewis x (sLex-capped P-selectin glycoprotein ligand 1. Molecular docking analyses predicted that OmpA residues G61 and K64 interact with the two sLex sugars that are important for infection, α2,3-sialic acid and α1,3-fucose. Amino acid substitution analyses demonstrated that K64 was necessary, and G61 was contributory, for recombinant OmpA to bind to host cells and competitively inhibit A. phagocytophilum infection. Adherence of OmpA to RF/6A endothelial cells, which express little to no sLex but express the structurally similar glycan, 6-sulfo-sLex, required α2,3-sialic acid and α1,3-fucose and was antagonized by 6-sulfo-sLex antibody. Binding and uptake of OmpA-coated latex beads by myeloid cells was sensitive to sialidase, fucosidase, and sLex antibody. The Asp14 binding domain was also defined, as antibody specific for residues 113 to 124 inhibited infection. Because OmpA, Asp14, and AipA each contribute to the infection process, it was rationalized that the most effective blocking approach would target all three. An antibody cocktail targeting the OmpA, Asp14, and AipA binding domains neutralized A. phagocytophilumbinding and infection of host cells. This study dissects OmpA-receptor interactions and demonstrates the effectiveness of binding domain-specific antibodies for blocking A. phagocytophilum infection

    K65R in Subtype C HIV-1 Isolates from Patients Failing on a First-Line Regimen Including d4T or AZT: Comparison of Sanger and UDP Sequencing Data

    Get PDF
    BACKGROUND: We and others have shown that subtype C HIV-1 isolates from patients failing on a regimen containing stavudine (d4T) or zidovudine (AZT) exhibit thymidine-associated mutations (TAMs) and K65R which can impair the efficacy of Tenofovir (TDF) at second line. Depending on the various studies, the prevalence of K65R substitution as determined by the Sanger method ranges from 4 to 30%. Our aim was to determine whether ultra-deep pyrosequencing (UDPS) could provide more information than the Sanger method about selection of K65R in this population of patients. METHODS: 27 subtype C HIV-1 isolates from treated patients failing on a regimen with d4T or AZT plus lamivudine (3TC) plus nevirapine (NVP) or efavirenz (EFV) and who had been sequenced by Sanger were investigated by UDPS at codon 65 of the reverse transcriptase (RT). 18 isolates from naïve patients and dilutions of a control K65R plasmid were analysed by Sanger plus UDPS. RESULTS: Analysis of Sanger sequences of subtype C HIV-1 isolates from naïve patients exhibited expected polymorphic substitutions compared to subtype B but no drug resistance mutations (DRMs). Quantitation of K65R variants by UDPS ranged from <0.4% to 3.08%. Sanger sequences of viral isolates from patients at failure of d4T or AZT plus 3TC plus NVP or EFV showed numerous DRMs to nucleoside reverse transcriptase inhibitors (NRTIs) including M184V, thymidine-associated mutations (TAMs) plus DRMs to non- nucleoside reverse transcriptase inhibitors (NNRTIs). Two K65R were observed by Sanger in this series of 27 samples with UDPS percentages of 27 and 87%. Other samples without K65R by Sanger exhibited quantities of K65R variants ranging from <0.4% to 0.80%, which were below the values observed in isolates from naïve patients. CONCLUSIONS: While Sanger sequencing of subtype C isolates from treated patients at failure of d4T or AZT plus 3TC plus NVP or EFV exhibited numerous mutations including TAMs and 8% K65R, UDPS quantitation of K65R variants in the same series did not provide any more information than Sanger

    Flexible Dye-Sensitized Solar Cell Based on Vertical ZnO Nanowire Arrays

    Get PDF
    Flexible dye-sensitized solar cells are fabricated using vertically aligned ZnO nanowire arrays that are transferred onto ITO-coated poly(ethylene terephthalate) substrates using a simple peel-off process. The solar cells demonstrate an energy conversion efficiency of 0.44% with good bending tolerance. This technique paves a new route for building large-scale cost-effective flexible photovoltaic and optoelectronic devices

    Left ventricular T2 distribution in Duchenne Muscular Dystrophy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although previous studies have helped define the natural history of Duchenne Muscular Dystrophy (DMD)-associated cardiomyopathy, the myocardial pathobiology associated with functional impairment in DMD is not yet known.</p> <p>The objective of this study was to assess the distribution of transverse relaxation time (T2) in the left ventricle (LV) of DMD patients, and to determine the association of myocardial T2 heterogeneity to the severity of cardiac dysfunction. DMD patients (n = 26) and normal control subjects (n = 13) were studied by Cardiovascular Magnetic Resonance (CMR). DMD subject data was stratified based on subject age and LV Ejection Fraction (EF) into the following groups: A (<12 years old, n = 12); B (≥12 years old, EF ≤ 55%, n = 8) and C (≥12 years old, EF = 55%, n = 6). Controls were also stratified by age into Groups N1 (<12 years, n = 6) and N2 (>12 years, n = 5). LV mid-slice circumferential myocardial strain (ε<sub>cc</sub>) was calculated using tagged CMR imaging. T2 maps of the LV were generated for all subjects using a black blood dual spin echo method at two echo times. The Full Width at Half Maximum (<it>FWHM</it>) was calculated from a histogram of LV T2 distribution constructed for each subject.</p> <p>Results</p> <p>In DMD subject groups, <it>FWHM </it>of the T2 histogram rose progressively with age and decreasing EF (Group A <it>FWHM</it>= 25.3 ± 3.8 ms; Group B <it>FWHM</it>= 30.9 ± 5.3 ms; Group C <it>FWHM</it>= 33.0 ± 6.4 ms). Further, <it>FWHM </it>was significantly higher in those with reduced circumferential strain (|ε<sub>cc</sub>| ≤ 12%) (Group B, and C) than those with |ε<sub>cc</sub>| > 12% (Group A). Group A <it>FWHM </it>was not different from the two normal groups (N1 <it>FWHM </it>= 25.3 ± 3.5 ms; N2 <it>FWHM</it>= 24.0 ± 7.3 ms).</p> <p>Conclusion</p> <p>Reduced EF and ε<sub>cc </sub>correlates well with increased T2 heterogeneity quantified by <it>FWHM</it>, indicating that subclinical functional impairments could be associated with pre-existing abnormalities in tissue structure in young DMD patients.</p

    Gene Expression Profiles Distinguish the Carcinogenic Effects of Aristolochic Acid in Target (Kidney) and Non-target (Liver) Tissues in Rats

    Get PDF
    BACKGROUND: Aristolochic acid (AA) is the active component of herbal drugs derived from Aristolochia species that have been used for medicinal purposes since antiquity. AA, however, induced nephropathy and urothelial cancer in people and malignant tumors in the kidney and urinary tract of rodents. Although AA is bioactivated in both kidney and liver, it only induces tumors in kidney. To evaluate whether microarray analysis can be used for distinguishing the tissue-specific carcinogenicity of AA, we examined gene expression profiles in kidney and liver of rats treated with carcinogenic doses of AA. RESULTS: Microarray analysis was performed using the Rat Genome Survey Microarray and data analysis was carried out within ArrayTrack software. Principal components analysis and hierarchical cluster analysis of the expression profiles showed that samples were grouped together according to the tissues and treatments. The gene expression profiles were significantly altered by AA treatment in both kidney and liver (p < 0.01; fold change > 1.5). Functional analysis with Ingenuity Pathways Analysis showed that there were many more significantly altered genes involved in cancer-related pathways in kidney than in liver. Also, analysis with Gene Ontology for Functional Analysis (GOFFA) software indicated that the biological processes related to defense response, apoptosis and immune response were significantly altered by AA exposure in kidney, but not in liver. CONCLUSION: Our results suggest that microarray analysis is a useful tool for detecting AA exposure; that analysis of the gene expression profiles can define the differential responses to toxicity and carcinogenicity of AA from kidney and liver; and that significant alteration of genes associated with defense response, apoptosis and immune response in kidney, but not in liver, may be responsible for the tissue-specific toxicity and carcinogenicity of AA

    Predictors of packed red cell transfusion after isolated primary coronary artery bypass grafting – The experience of a single cardiac center: A prospective observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Preoperative patients' characteristics can predict the need for perioperative blood component transfusion in cardiac surgical operations. The aim of this prospective observational study is to identify perioperative patient characteristics predicting the need for allogeneic packed red blood cell (PRBC) transfusion in isolated primary coronary artery bypass grafting (CABG) operations.</p> <p>Patients and Methods</p> <p>105 patients undergoing isolated, first-time CABG were reviewed for their preoperative variables and followed for intraoperative and postoperative data. Patients were 97 males and 8 females, with mean age 58.28 ± 10.97 years. Regression logistic analysis was used for identifying the strongest perioperative predictors of PRBC transfusion.</p> <p>Results</p> <p>PRBC transfusion was used in 71 patients (67.6%); 35 patients (33.3%) needed > 2 units and 14 (13.3%) of these needed > 4 units. Univariate analysis identified female gender, age > 65 years, body weight ≤ 70 Kg, BSA ≤ 1.75 m<sup>2</sup>, BMI ≤ 25, preoperative hemoglobin ≤ 13 gm/dL, preoperative hematocrit ≤ 40%, serum creatinine > 100 μmol/L, Euro SCORE (standard/logistic) > 2, use of CPB, radial artery use, higher number of distal anastomoses, and postoperative chest tube drainage > 1000 mL as significant predictors. The strongest predictors using multivariate analysis were CPB use, hematocrit, body weight, and serum creatinine.</p> <p>Conclusion</p> <p>The predictors of PRBC transfusion after primary isolated CABG are use of CPB, hematocrit ≤ 40%, weight ≤ 70 Kg, and serum creatinine > 100 μmol/L. This leads to better utilization of blood bank resources and cost-efficient targeted use of expensive blood conservation modalities.</p

    A Generic System for the Expression and Purification of Soluble and Stable Influenza Neuraminidase

    Get PDF
    The influenza surface glycoprotein neuraminidase (NA) is essential for the efficient spread of the virus. Antiviral drugs such as Tamiflu (oseltamivir) and Relenza (zanamivir) that inhibit NA enzyme activity have been shown to be effective in the treatment of influenza infections. The recent ‘swine flu’ pandemic and world-wide emergence of Tamiflu-resistant seasonal human influenza A(H1N1) H274Y have highlighted the need for the ongoing development of new anti-virals, efficient production of vaccine proteins and novel diagnostic tools. Each of these goals could benefit from the production of large quantities of highly pure and stable NA. This publication describes a generic expression system for NAs in a baculovirus Expression Vector System (BEVS) that is capable of expressing milligram amounts of recombinant NA. To construct NAs with increased stability, the natural influenza NA stalk was replaced by two different artificial tetramerization domains that drive the formation of catalytically active NA homotetramers: GCN4-pLI from yeast or the Tetrabrachion tetramerization domain from Staphylothermus marinus. Both recombinant NAs are secreted as FLAG-tagged proteins to allow for rapid and simple purification. The Tetrabrachion-based NA showed good solubility, increased stability and biochemical properties closer to the original viral NA than the GCN4-pLI based construct. The expressed quantities and high quality of the purified recombinant NA suggest that this expression system is capable of producing recombinant NA for a broad range of applications including high-throughput drug screening, protein crystallisation, or vaccine development
    corecore