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RESEARCH ARTICLE

Essential Domains of Anaplasma
phagocytophilum Invasins Utilized to Infect
Mammalian Host Cells
David Seidman¤a, Kathryn S. Hebert, Hilary K. Truchan, Daniel P. Miller¤b, Brittney
K. Tegels, Richard T. Marconi, Jason A. Carlyon*

Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine,
Richmond, Virginia, United States of America

¤a Current address: Naval Medical Center, Primary Care, Clinical Pathology, Boone Branch Little Creek,
Portsmouth, Virginia, United States of America
¤b Current address: Department of Oral Health and Rehabilitation, University of Louisville, Louisville,
Kentucky, United States of America
* jacarlyon@vcu.edu

Abstract
Anaplasma phagocytophilum causes granulocytic anaplasmosis, an emerging disease of

humans and domestic animals. The obligate intracellular bacterium uses its invasins

OmpA, Asp14, and AipA to infect myeloid and non-phagocytic cells. Identifying the domains

of these proteins that mediate binding and entry, and determining the molecular basis of

their interactions with host cell receptors would significantly advance understanding of A.
phagocytophilum infection. Here, we identified the OmpA binding domain as residues 59 to

74. Polyclonal antibody generated against a peptide spanning OmpA residues 59 to 74 in-

hibited A. phagocytophilum infection of host cells and binding to its receptor, sialyl Lewis x

(sLex-capped P-selectin glycoprotein ligand 1. Molecular docking analyses predicted that

OmpA residues G61 and K64 interact with the two sLex sugars that are important for infec-

tion, α2,3-sialic acid and α1,3-fucose. Amino acid substitution analyses demonstrated that

K64 was necessary, and G61 was contributory, for recombinant OmpA to bind to host cells

and competitively inhibit A. phagocytophilum infection. Adherence of OmpA to RF/6A endo-

thelial cells, which express little to no sLex but express the structurally similar glycan, 6-

sulfo-sLex, required α2,3-sialic acid and α1,3-fucose and was antagonized by 6-sulfo-sLex

antibody. Binding and uptake of OmpA-coated latex beads by myeloid cells was sensitive to

sialidase, fucosidase, and sLex antibody. The Asp14 binding domain was also defined, as

antibody specific for residues 113 to 124 inhibited infection. Because OmpA, Asp14, and

AipA each contribute to the infection process, it was rationalized that the most effective

blocking approach would target all three. An antibody cocktail targeting the OmpA, Asp14,

and AipA binding domains neutralized A. phagocytophilum binding and infection of host

cells. This study dissects OmpA-receptor interactions and demonstrates the effectiveness

of binding domain-specific antibodies for blocking A. phagocytophilum infection.
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Author Summary

Anaplasma phagocytophilum causes the potentially deadly bacterial disease granulocytic
anaplasmosis. The pathogen replicates inside white blood cells and, like all other obligate
intracellular organisms, must enter host cells to survive. Multiple A. phagocytophilum sur-
face proteins called invasins cooperatively orchestrate the entry process. Identifying these
proteins’ domains that are required for function, and determining the molecular basis of
their interaction with host cell receptors would significantly advance understanding of A.
phagocytophilum pathogenesis. In this study, the binding domains of two A. phagocytophi-
lum surface proteins, OmpA and Asp14, were identified. The specific OmpA residues that
interact with its host cell receptor were also defined. An antibody cocktail generated
against the binding domains of OmpA, Asp14, and a third invasin, AipA, blocked the abil-
ity of A. phagocytophilum to infect host cells. The data presented within suggest that bind-
ing domains of OmpA, Asp14, and AipA could be exploited to develop a vaccine for
granulocytic anaplasmosis.

Introduction
Human granulocytic anaplasmosis (HGA) is an emerging tick-borne zoonosis in the United
States, Europe, and Asia [1]. The number of HGA cases reported to the U. S. Centers for Dis-
ease Control and Prevention rose nearly seven-fold between 2003 and 2012 [2,3]. Seropreva-
lence data indicate that the disease is underreported in some endemic regions [4–8]. HGA can
also be spread via perinatal, nosocomial, and blood transfusion routes [6,9–13]. It is an acute
illness characterized by fever, chills, headache, malaise, leukopenia, thrombocytopenia, and ele-
vated liver enzymes. Complications can include shock, seizures, pneumonitis, rhabdomyolysis,
hemorrhage, increased susceptibility to secondary infections, and death. Risk for complications
and fatality is greater for the elderly, the immunocompromised, and when proper diagnosis
and/or antibiotic therapy are delayed [1]. The causative agent of HGA is Anaplasma phagocyto-
philum, an obligate intracellular bacterium that exhibits a tropism for neutrophils [1]. A. pha-
gocytophilum is carried by a variety of wild animal reservoirs and, in addition to humans,
causes disease in domestic animals including dogs, cats, horses, and sheep [14].

A. phagocytophilum exhibits a biphasic developmental cycle similar to that of Chlamydia
spp., Ehrlichia spp., and Coxiella burnetii [15–18]. The A. phagocytophilum infectious dense-
cored (DC) form promotes its receptor-mediated uptake into a host cell-derived vacuole. With-
in its vacuole, the DC develops into the non-infectious reticulate cell (RC) form that replicates
to form a bacterial cluster called a morula [18,19]. RCs then convert back to DCs and are re-
leased to initiate the next infection cycle [18].

Sialyl Lewis x ([NeuAcμ(2–3)Galβ1–4(Fucα1–3)GlcNac]; sLex), an α2,3-sialylated and
α1,3-fucosylated core-2 O-linked glycan that caps the N-termini of selectin ligands [20], is a
critical A. phagocytophilum receptor [21]. sLex is richly expressed on mammalian cells that are
permissive for A. phagocytophilum infection—neutrophils, bone marrow progenitors, and pro-
myelocytic HL-60 cells [22–24]. A. phagocytophilum recognizes sLex that caps the N-terminus
of P-selectin glycoprotein ligand-1 (PSGL-1) on these myeloid cells [21,25]. Neutrophils and
HL-60 cells that have been treated with an sLex blocking antibody, from which surface sialic
acids have been enzymatically removed, or that are devoid of sialyltransferase and/or α1,3-
fucosyltransferase activity are resistant to A. phagocytophilum binding and infection
[19,21,26,27]. A. phagocytophilum also infects rhesus monkey choroidal (RF/6A) endothelial
cells, megakaryoblastic MEG-01 cells, and bone marrow-derived mast cells in tissue culture.
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Infection of these non-myeloid host cell types depends on sLex itself, α2,3-sialic acid, and/or
α1,3-fucose [28–35]. Thus, sLex and possibly other closely related α2,3-sialylated and α1,3-
fucosylated molecules are essential for efficient A. phagocytophilum infection of
mammalian cells.

We identified A. phagocytophilum OmpA and α2,3-sialic acid (N-acetylneuraminic acid
[Neu5Ac], further referred to as sialic acid throughout) as the bacterium’s first adhesin/inva-
sin-receptor pair [19]. OmpA binding to the α2,3-sialic acid determinant of sLex on myeloid
cells and to α2,3-sialylated glycans on RF/6A cells are vital steps in A. phagocytophilum inva-
sion of these host cell types [19]. Exposure of OmpA on the A. phagocytophilum DC surface
makes it accessible to antibodies [19], which could be used to exploit the bacterium’s obligatory
intracellular nature to block the host cell invasion step that is essential for survival. The OmpA
binding domain that recognizes α2,3-sialic acid lies within amino acids 19 to 74 [19], but has
yet to be specifically identified. The A. phagocytophilumOMP that recognizes α1,3-fucose is
unknown. OmpA functions in concert with two additional invasins that are also upregulated
during tick transmission feeding, Asp14 (14-kDa A. phagocytophilum surface protein) and
AipA (A. phagocytophilum invasion protein A), to promote optimal A. phagocytophilum entry
into mammalian host cells [29,36]. Thus, the most effective anti-granulocytic anaplasmosis ap-
proach may require targeting of all three invasins. We defined the AipA binding domain as res-
idues 9 to 21 [36]. Pinpointing the OmpA and Asp14 binding domains; dissecting the
interactions of key OmpA amino acids with α2,3-sialic acid and potentially α1,3-fucose; and
evaluating the efficacy of targeting the OmpA, Asp14, and AipA binding domains together
would potentially benefit development of approaches to block A. phagocytophilum infection.

In this study, we used antibody blocking, in silico docking models, and site-directed muta-
genesis to identify the A. phagocytophilumOmpA binding domain, specifically the key
residues that are essential for its adhesin/invasin activity, and determined that it recognizes
both α2,3-sialic acid α1,3-fucose. This work represents the most detailed study of any rickettsi-
al adhesin/invasin-receptor pair to date. Furthermore, we identified the Asp14 binding domain
and confirmed that an antibody cocktail targeting the binding domains of OmpA, Asp14, and
AipA nearly abolishes A. phagocytophilum infection of host cells.

Results

OmpA amino acids 59 to 74 are critical for A. phagocytophilum to bind to
sLex-capped PSGL-1 and for infection of mammalian host cells
The OmpA region that is important for A. phagocytophilum infection of mammalian host cells
lies within residues 19 to 74 (OmpA19–74) [19]. As a first step in further delineating the binding
domain, we raised polyclonal antisera against peptides corresponding to OmpA amino acids
23 to 40, 41 to 58, and 59 to 74. We verified that the antisera were specific for OmpA by con-
firming that each recognized recombinant forms of mature OmpA (minus the signal sequence;
corresponding to residues 19 to 205 and hereafter referred to as OmpA) and OmpA19–74, but
neither OmpA75–205 nor Asp14 (S1 Fig. and Fig. 1A). Anti-OmpA41–58 and anti-OmpA59–74

were specific for their target peptides at all serum dilutions. Anti-OmpA23–40 was specific for
its target peptide at most dilutions tested, but exhibited low level recognition of OmpA41–58 at
dilutions below 1:12,800 (S1 Fig. and Fig. 1A). Next, we evaluated if any of the OmpA peptide
antisera could inhibit A. phagocytophilum infection of host cells. Bacteria that had been treated
with anti-OmpA or preimmune serum served as positive and negative controls, respectively.
As previously observed [19], OmpA antibody reduced the percentage of A. phagocytophilum
infected HL-60 cells by approximately 40% (Fig. 1B). OmpA59–74 antibody exhibited a dose-de-
pendent inhibitory effect and, at a concentration of 200 ug/ml, reduced the percentage of
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infected HL-60 cells by approximately three-fold. Antisera targeting OmpA residues 23 to 40
and 41 to 58 exhibited very little to no inhibition of infection, regardless of concentration. Un-
less otherwise specified, all antisera were used at a concentration of 200 ug/ml in subsequent
blocking experiments.

Fig 1. OmpA amino acids 59 to 74 are critical for A. phagocytophilum to bind to sLex-capped PSGL-1 and for infection of mammalian host cells.
(A) ELISA in which OmpA23–40, OmpA41–58, and OmpA59–74 antibodies (diluted 1:1600) were used to screen wells coated with GST, GST-OmpA, GST-
OmpA19–74, GST-OmpA75–205, or peptides corresponding to OmpA23–40, OmpA41–58, or OmpA59–74. Results shown are the mean ± SD of triplicate samples
and are representative of three independent experiments with similar results. (B) Pretreatment of A. phagocytophilumwith OmpA59–74 antibody inhibits
infection of HL-60 cells in a dose-dependent manner. DC bacteria were incubated with 200 μg/ml of preimmune serum, 200 μg/ml of serum raised against
GST-OmpA, or two-fold serially-diluted concentrations of sera raised against OmpA23–40, OmpA41–58, or OmpA59–74 ranging from 0 to 200 μg/ml and then
incubated with HL-60 cells. The infection was allowed to proceed for 24 h after which the cells were fixed and examined using immunofluorescence
microscopy to quantify the percentage of infected cells. Results shown are relative to host cells that had been incubated with bacteria exposed to preimmune
serum and are representative of three experiments with similar results. (C) OmpA59–74 antibody inhibits A. phagocytophilum binding to sLex-capped PSGL-1.
DC bacteria were exposed to preimmune serum, antibodies against OmpA, OmpA23–40, OmpA41–58, or OmpA59–74 and then incubated with PSGL-1 CHO
cells. Bacteria that were not exposed to antibodies and incubated with PSGL-1 CHO cells or CHO (-) cells were positive and negative controls, respectively,
for bacterial binding. The mean numbers ± SD of bound DC organisms per cell were determined using immunofluorescence microscopy. Results shown are
the mean ± SD of six combined experiments. Statistically significant (** P< 0.005; ***P< 0.001) values are indicated.

doi:10.1371/journal.ppat.1004669.g001
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sLex-capped PSGL-1 is an A. phagocytophilum receptor on human myeloid cells [21,25], and
OmpA has been shown to bind the sLex portion [19]. Because OmpA59–74 antibody significantly
inhibited A. phagocytophilum infection of HL-60 cells, we rationalized that OmpA amino acids
that are critical for engaging the receptor are within residues 59 to 74. To test our hypothesis, we
assessed the abilities of antisera targeting various portions of OmpA to interfere with A. phagocy-
tophilum binding to Chinese hamster ovary cells transfected to express sLex-capped PSGL-1
(PSGL-1 CHO cells) [37]. These cells are useful models for studying A. phagocytophilum interac-
tions with sLex and/or PSGL-1 because they robustly support bacterial binding but not infection,
while untransfected CHO [CHO (-)] cells that lack expression of these receptors poorly support
bacterial binding [18,19,26,27,29]. Anti-OmpA59–74 reduced the mean number of bound A. pha-
gocytophilumDC organisms per PSGL-1 CHO cell by approximately four-fold to nearly that of
CHO (-) cells (Fig. 1C). Anti-OmpA reduced bacterial binding to PSGL-1 CHO cells by approxi-
mately two-fold. Anti-OmpA23–40, anti-OmpA41–58, and preimmune serum had no effect. These
results indicate that the OmpA binding domain lies within amino acids 59 to 74 and this region
is important for A. phagocytophilum recognition of sLex-capped PSGL-1.

Molecular docking models of A. phagocytophilumOmpA-sLex

interactions suggest that residues within OmpA59–74 engage sLex

To complement our antibody blocking experiments, molecular modeling and docking was used
to identify the OmpA amino acids that possibly contact sLex. First, a three-dimensional model of
the invasin was generated. A crystal structure for A. phagocytophilumOmpA has yet to be deter-
mined, but an abundance of crystal structures for similar bacterial proteins have. The Phyre2
(Protein Homology/ Analogy Recognition Server version 2.0) server (www.sbg.bio.ic.ac.uk/
phyre2), which predicts three-dimensional structures for protein sequences and threads the pre-
dicted models on known crystal structures [38], was used to generate a tertiary structure model
for OmpA (Fig. 2A). The resulting homology model predicted that OmpA residues 59 to 74 form
part of a surface-exposed alpha helix (Fig. 2A), which could potentially interact with ligands. Sur-
face electrostatic values calculated using the adaptive Poisson-Boltzmann solver (APBS) [39]
plugin for PyMOL (pymol.org/educational) indicated that OmpA amino acids 19 to 74 have an
overall cationic surface charge. The rest of the modeled protein exhibits an overall anionic surface
charge (Fig. 2C). These findings are consistent with prior observations that bacterial and viral
proteins that interact with sLex and/or sialic acid do so at cationic surface patches [40–44].

For docking predictions, the sLex glycan (Fig. 2B) was extracted from the crystal structure of
sLex-capped PSGL-1 (DOI:10.2210/pdb1g1s/PDB). Autodock Vina was used to predict how
OmpAmight interact with sLex [45,46]. The search grid encapsulated OmpA19–74 (Fig. 2A).
The top two docking models, each with the same predicted affinity value of -4.2 kcal/mol, dis-
played similar interactions between sLex and the OmpA region encompassed by amino acids 59
to 74. In both models, K64 of OmpA was predicted to bind the α2,3-sialic acid residue of sLex

(Fig. 2, D and E). G61 was also predicted to interact with sLex in both models, though it was pre-
dicted to bind α2,3-sialic acid in one model and α1,3-fucose in the other. Lastly, K60 was predicted
to bind the ß1,3-galactose residue of sLex in the docking model presented in Fig. 2E. Together, the
in silico predictions and peptide antibody blocking results suggest that OmpA59–74 contains critical
residues that interact with sLex to promote A. phagocytophilum infection of host cells.

OmpA is conserved among A. phagocytophilum strains and K64 is
conserved among AnaplasmataceaeOmpA proteins
Aligning the OmpA sequence from the A. phagocytophilumNCH-1 strain that we study, which
was originally isolated from a HGA patient in Nantucket, MA [47], with those encoded by
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geographically diverse A. phagocytophilum isolates that had been recovered from infected hu-
mans, animals, and ticks [48–54] revealed that OmpA is highly conserved among these strains
(S2A Fig.). Eight of the nine sequences were identical. The OmpA of NorV2 Norwegian sheep
isolate [53] had only three amino acid differences, none of which were within the binding domain
encompassed by residues 59 to 74. The high degree of OmpA sequence conservation further
supports the invasin’s importance to A. phagocytophilum pathobiology. We next aligned NCH-1
OmpA residues 19 to 74 with corresponding regions of OmpA homologs from A.marginale and

Fig 2. Molecular dockingmodels of A. phagocytophilumOmpA-sLex interactions. (A) Predicted tertiary
structure for A. phagocytophilumOmpA. The orange portion delineates residues 19 to 74. The red portion
corresponds to amino acids 59 to 74, and the gray portion corresponds to residues 75 to 205. The dotted line
separates the regions encompassed by residues 19 to 74 and 75 to 205. Residues K60, G61, and K64
positions are indicated. (B) Stick representation of the N-terminal PSGL-1 amino acids 61 to 77 (gray) capped
with sLex derived from PDB 1g1s. The sLex glycan extends off of threonine 73. sLex linkages and individual
sugar residues are denoted. (C) Electrostatic surface map of A. phagocytophilumOmpA, as generated using
the PyMol APBS plugin. The left image is oriented as in (A). The right image is rotated 180° around the y-axis.
Positive and negative charges are indicated by blue and red, respectively. The dotted line is a demarcation
between the regions encompassed by residues 19 to 74 and 75 to 205, which have overall cationic and
anionic surface charges, respectively. (D and E) OmpA and sLex interactions predicted by the Autodock Vina
algorithm. OmpA is presented as a gray ribbon model, sLex as a multicolor stick model, and hydrogen
bonding by dotted lines. OmpA residue K64 is predicted to interact with α2,3-sialic acid (green) of sLex (D and
E). Residue G61 is predicted to interact with either α2,3-sialic acid (D) or α1,3-fucose (blue) of sLex (E).
Residue K60 is predicted to interact with β1,3-galactose of sLex (E).

doi:10.1371/journal.ppat.1004669.g002
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Ehrlichia spp., which are in the family Anaplasmataceae with A. phagocytophilum and infect bo-
vine erythrocytes and human and animal monocytes, respectively [55–57]. A. phagocytophilum
OmpA K64 that was predicted to potentially interact with sLex (Fig. 2, D and E), was the only
binding domain residue that was conserved among all AnaplasmataceaeOmpA regions exam-
ined (S2B Fig.). Additional residues within the A. phagocytophilumOmpA binding domain,
including the other two predicted to interact with sLex, K60 and G61 (Fig. 2, D and E), were
conserved among Anaplasma spp. but not Ehrlichia spp. OmpA proteins (S2B Fig.).

G61 and K64 are essential for recombinant OmpA to optimally bind to
mammalian host cells and competitively inhibit A. phagocytophilum
infection
Because A. phagocytophilum is an obligate intracellular bacterium, developing a knock out-
complementation system for this organism has proved challenging and has not been described.
Therefore, we utilized a series of alternative approaches to further functionally evaluate OmpA.
Recombinant OmpA can be used as a competitive agonist to block A. phagocytophilum access
to its receptor and thereby inhibit infection [19]. We exploited this phenomenon to further de-
fine the OmpA amino acids that are critical for receptor recognition and bacterial uptake by as-
sessing the competitive agonist abilities of OmpA proteins having site-directed amino acid
changes. Our approach was built on the rationale that OmpA proteins in which the binding do-
main was disrupted would be unable to inhibit infection. First, we generated OmpA proteins
N-terminally fused to glutathione-S-transferase (GST), each of which had an insertion of the
peptide CLNHL at one of six different sites within residues 19 to 78. This approach has been
used in previous studies to disrupt proteins’ binding domains without perturbing overall pro-
tein structure, and the insertion sequence that we devised for this purpose was a consensus of
the insertion peptides used in those studies [58–60]. Incubating HL-60 cells with the positive
control, GST-OmpA, prior to the addition of DC bacteria resulted in a significant reduction in
the percentage of infected cells relative to GST alone (Fig. 3A), as shown previously [19]. GST-
OmpA proteins carrying insertions between residues 67 and 68 and between 62 and 63 were
completely and partially abrogated, respectively, in their abilities to inhibit A. phagocytophilum
infection. GST-OmpA proteins bearing insertions at other sites were unaffected in their ability
to inhibit infection.

We next set out to identify the specific amino acids of GST-OmpA that were critical for
it to inhibit A. phagocytophilum infection. We repeated the competitive agonist assay using
GST-OmpA proteins in which select amino acids had been mutated to alanine (S2 Fig. and
Fig. 3, B and C). Many of the targeted residues were within OmpA amino acids 59 to 74.
R32 and D53 were selected because they lie outside of residues 59 to 74, and, accordingly,
we anticipated that substituting them would not alter OmpA function. GST-OmpAK64A was
considerably reduced in its ability to inhibit A. phagocytophilum infection (Fig. 3, B and C),
thereby indicating that this highly conserved residue was critical for GST-OmpA to serve as a
competitive agonist. K65, however, was dispensable for this function, as the blocking ability
of GST-OmpAK65A was uncompromised and the blocking ability of GST-OmpAKK6465AA

was no greater than that of GST-OmpAK64. GST-OmpAG61A displayed a modest but signifi-
cant decline in its competitive agonist ability. Replacement of both G61 and K64 with ala-
nines yielded an additive effect that was greater than substituting either residue alone, as
GST-OmpAGK6164AA was unable to inhibit infection. GST-OmpA proteins in which R32,
D53, K60, E69 and E72 had been mutated to alanine were each unaffected in the ability to
hinder infection.

A. phagocytophilum Invasin-Receptor Interactions
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Given that K64 and G61 are vital and contributory, respectively, to the ability of recombi-
nant OmpA to competitively inhibit A. phagocytophilum infection, we evaluated if these resi-
dues mediate binding to mammalian host cell surfaces. RF/6A and HL-60 cells were incubated
with His-tagged OmpA proteins. After unbound proteins were washed away, bound proteins
were detected by flow cytometry using a His-tag antibody. His-tagged OmpA and OmpAD53A

bound equally well to RF/6A cells (Fig. 3D). His-OmpAG61A bound poorly, His-OmpAK64A

even more so, and His-OmpAGK6164AA could not bind to host cells. Collectively, these data are

Fig 3. G61 and K64 are essential for recombinant OmpA to optimally bind to mammalian host cells and competitively inhibit A. phagocytophilum
infection.GST-OmpA proteins having the CLNHL peptide inserted between OmpA amino acids 67 and 68 or having G61 and/or K64 mutated to alanine are
unable to bind to competitively inhibit A. phagocytophilum infection of mammalian host cells. HL-60 cells were incubated with DC organisms in the presence
of GST alone, GST-OmpA, GST-OmpA proteins bearing insertions of CLNHL between the indicated residues (A), or GST-OmpA proteins having the
indicated amino acids substituted with alanine (B and C) for 1 h. After washing to remove unbound bacteria, host cells were incubated for 24 h and
subsequently examined by immunofluorescence microscopy to determine the percentage of infected cells (A and B) or the mean number (± SD) of morulae
per cell (C). Results shown in (A), (B), and (C) are the means ± SD for six to twelve combined experiments. The data presented in panel C are the normalized
values of six to twelve experiments. Statistically significant (** P< 0.005; ***P< 0.001) values are indicated. (D) Flow cytometric analysis of His-OmpA and
His-OmpA proteins bearing alanine substitutions binding to RF/6A cells. Data are representative of two experiments with similar results.

doi:10.1371/journal.ppat.1004669.g003
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consistent with the invasin-receptor contacts predicted by the OmpA-sLex docking models and
underscore the importance of OmpA K64 and G61 to OmpA-receptor interactions.

OmpA interacts with α1,3-fucose on mammalian host cell surfaces
α1,3-fucose is critical for A. phagocytophilum to bind PSGL-1-modeled glycopeptides, to
bind and invade human and murine myeloid cells, and to establish infection in laboratory mice
[25–27]. Consistent with these observations, PSGL-1 CHO cells that had been pretreated with
α1,3/4-fucosidase were approximately three-fold less permissive for A. phagocytophilum bind-
ing (S3A Fig.). Multiple lines of evidence led us to hypothesize that OmpA binds α1,3-fucose.
First, OmpA binds α2,3-sialic acid [19], which is in close proximity to α1,3-fucose on sLex

[46]. Second, the docking model in Fig. 2E predicted that OmpA residues within the binding
domain contact both α2,3-sialic acid and α1,3-fucose of sLex. Third, OmpA is important for
A. phagocytophilum infection of not only myeloid, but also endothelial cells [19]. Fourth, fucose
residues are critical for the pathogen to invade RF/6A endothelial cells, as pretreatment of the
host cells with α1,3/4-fucosidase made them significantly less permissive to A. phagocytophi-
lum binding (S3B Fig.) and infection (S3C Fig.).

To determine if OmpA recognizes fucose, His-tagged OmpA was incubated with RF/6A
cells that had been treated with α1,3/4-fucosidase and binding was assessed by immunofluores-
cence microscopy and flow cytometry. α2,3/6-sialidase-treated RF/6A cells were included as a
positive control for a treatment that would make the host cells less permissive to recombinant
OmpA binding [19]. To verify the efficacy and specificity of both glycosidases, treated and un-
treated host cells were screened with AAL (Aleuria aurantia lectin) and MAL II (Maackia
amurensis lectin II). AAL recognizes fucose residues that are in α1,3- and α1,6-linkages with
N-acetylglucosamine [61,62]. MAL II detects sialic acids that are in α2,3-linkages with galac-
tose [63]. Fucosidase treatment abolished AAL but not MAL II binding, while sialidase treat-
ment eliminated MAL II but not AAL binding (Fig. 4, A to D). Thus, the glycosidases were
effective and specific. His-OmpA binding to both sialidase- and fucosidase-treated RF/6A cells
was comparably reduced relative to vehicle control treated cells, while binding of His-Asp14
was unaffected. Incubating the host cells with MAL II or AAL prior to the addition of His-
OmpA competitively reduced the efficiency of His-OmpA binding by similar degrees as siali-
dase or fucosidase, respectively (Fig. 4E). Overall, these observations demonstrate that optimal
adhesion of OmpA to host cells involves both α2,3-sialic acid and α1,3-fucose and that Asp14
utilizes neither sialic acid nor fucose to bind to host cells.

OmpA interacts with 6-sulfo sLex on RF/6A endothelial cell surfaces
Because His-OmpA binding to RF/6A cells involved recognition of α2,3-sialic acid and α1,3-
fucose (Fig. 4), we hypothesized that OmpA interacts with sLex or a sLex-like receptor on these
host cells. sLex and the sLex-like molecule, 6-sulfo sLex (Neu5Ac(α2–3)Gal(β1–4)[Fuc(α1–3)]
[HSO3(3–6)]GlcNAc1) (Fig. 5A) have both been detected on the surfaces of high endothelial
venal, vascular, cancerous, and/or inflamed endothelial cells [64–76]. To assess if either glycan
is present on RF/6A cells, we screened them with sLex antibodies, CSLEX1 [77] and KM93 [78]
and the 6-sulfo-sLex antibody, G72 [64]. Robust G72 signal but little to no CSLEX1 or KM93
signal was detected on RF/6A cells (Fig. 5, B and C). Binding of His-OmpA to RF/6A cells that
had been pretreated with G72 was pronouncedly reduced relative to cells that had been incu-
bated with CSLEX1, KM93, or isotype control antibody (Fig. 5D). Thus, A. phagocytophilum
OmpA recognizes 6-sulfo-sLex on RF/6A endothelial cells.
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Fig 4. OmpA interacts with α1,3-fucose onmammalian host cell surfaces. (A to D) RF/6A cells were
treated with α1,3/4-fucosidase (A and C), α2,3/6-sialidase (B and D), or vehicle control (- fucosidase
and—sialidase, respectively). Glycosidase- and mock-treated cells were incubated with α1,3/6-fucose-
specific lectin, AAL; the α2,3-sialic acid-specific lectin, MAL II; His-OmpA; or His-Asp14. (A) The host cells
were fixed and screened using immmunofluorescence microscopy (A and B) or flow cytometry (C and D) to
detect lectin, His-OmpA, or His-Asp14 binding to host cells. In A and B, green fluorescence corresponds to
lectin (AAL or MAL II) or His-tagged protein (OmpA or Aps14) bound at cell surfaces. Host cell nuclei are
stained blue by DAPI. (E) AAL and MAL II competitively inhibit His-OmpA binding to mammalian host cells.
RF/6A cells were incubated with AAL and MAL II, after which His-OmpA was added. Following the removal of
unbound recombinant protein, His-OmpA bound on RF/6A cell surfaces was detected by flow cytometry.
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OmpA-coated beads bind to and are internalized by non-phagocytic
endothelial cells
The ability of recombinant OmpA to bind to non-phagocytic RF/6A endothelial cells [19]
(Figs. 3–5), suggests that, in addition to functioning as an invasin, it may also exhibit adhesin
activity. Furthermore, while OmpA on the A. phagocytophilum surface acts cooperatively with
Asp14 and AipA to mediate bacterial binding to and invasion of mammalian host cells

Statistically significant (***P< 0.001) values are indicated. Results shown are representative of three
experiments with similar results.

doi:10.1371/journal.ppat.1004669.g004

Fig 5. OmpA interacts with 6-sulfo sLex on RF/6A endothelial cell surfaces. (A) Schematic representations of sLex and 6-sulfo sLex. Below each
diagram is a statement denoting monoclonal antibodies that recognize each tetrasaccharide. Individual sugar and glycosidic linkages are indicated. (B and
C) 6-sulfo sLex is present in high abundance relative to sLex on RF/6A cells. RF/6A cells were screened with sLex-specific antibodies, CSLEX1 and KM93;
6-sulfo sLex-specific antibody, G72; or IgM isotype control followed by detection of cell surface bound antibodies using immunofluorescence microscopy
(B) and flow cytometry (C). (D) Antibody blocking of 6-sulfo sLex inhibits His-OmpA binding to RF/6A cells. RF/6A cells were incubated with CSLEX1, KM93,
G72, IgM, or vehicle (Cells only) followed by the addition of His-OmpA, and washing to remove unbound recombinant protein. Flow cytometry was used to
detect bound His-OmpA. Statistically significant (***P< 0.001) values are indicated. Results shown are representative of two experiments with
similar results.

doi:10.1371/journal.ppat.1004669.g005
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[19,29,36], its ability to mediate these processes by itself is unknown. Therefore, we assessed
the ability of recombinant OmpA to confer adhesiveness and invasiveness to inert particles.
His-OmpA was coupled to red fluorescent microspheres that were 1.0 μm in diameter, a size
similar to that of the diameter of an A. phagocytophilum DC organism (0.8 ± 0.2 μm) [18]. Suc-
cessful conjugation of His-OmpA to the beads was confirmed by immunofluorescence using
OmpA antiserum (Fig. 6A). RF/6A cells were incubated with recombinant OmpA-coated or
non-coated control beads and screened with OmpA antibody to determine the numbers of
beads bound per cell. To assess bead uptake, the cells were incubated for an additional 1 to 8 h
and trypsin was used to remove non-internalized beads prior to screening. Immunofluores-
cence microscopy revealed that significantly more OmpA coated beads bound to and were in-
ternalized by RF/6A cells versus control beads (Fig. 6, B and D). Scanning electron microscopy
corroborated these results, as OmpA coated bead were observed bound to and inducing the
formation of filopodia-like structures on the surfaces of RF/6A cells or covered by plasma
membrane (Fig. 6C). Thus, OmpA alone was sufficient to mediate bead binding to and uptake
by non-phagocytic RF/6A endothelial cells.

Fig 6. OmpA coated beads bind to and are internalized by non-phagocytic endothelial cells. (A) Confirmation of recombinant OmpA conjugation to
inert beads. Red fluorescent OmpA-coated microspheres (OmpA beads) were incubated with OmpA antibody (αOmpA) or isotype control. Unconjugated
(Control) beads were included as a negative control. Bound antibody (green) was detected using immunofluorescence microscopy. OmpA coated beads with
bound antibody appeared yellow when the individual fluorescence channels were merged, whereas beads without bound antibody appeared red. (B to D)
OmpA coated beads bind to and are internalized by non-phagocytic RF/6A cells. OmpA coated beads were incubated with RF/6A cells for 1 h after which
unbound beads were washed off. Cells were screened with OmpA antibody and examined using immunofluorescence (B and D) or scanning electron
microscopy (C) to assess binding or were incubated further to allow for bead uptake. To assess for internalized beads, the host cells were treated with
trypsin, washed, incubated overnight for the endothelial cells to re-adhere, fixed, and screened with OmpA antibody and immunofluorescence microscopy.
Because the host cells were not permeabilized, bound beads detected by OmpA antibody appeared yellow and internalized beads, which OmpA antibody
could not detect, remained red when viewed by immunofluorescence microscopy. (B) DIC, differential interference contrast microscopy. (C) Two scanning
electron micrographs depicting bound or internalized OmpA coated beads. Arrows denote filopodia-like structures bound to beads. Scale bars are indicated.
Results in (D) are representative of thirteen experiments with similar results. Statistically significant (** P< 0.005; ****P< 0.0001) values are indicated.

doi:10.1371/journal.ppat.1004669.g006
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Binding and uptake of OmpA-coated beads by myeloid cells is
dependent on sLex

We next assessed the ability of His-OmpA coated beads to bind and enter HL-60 cells and, if
so, whether these processes involve the OmpA myeloid cell receptor, sLex. Scanning electron
microscopy revealed that OmpA beads bound to and induced their own uptake into HL-60
cells (Fig. 7A). Relative to the results obtained using RF/6A cells (Fig. 6D), OmpA coated bead
binding to HL-60 cells was reduced (Fig. 7B). However, of the OmpA beads that did bind,
approximately half of them were internalized (Fig. 7C). Approximately three-fold fewer
control beads than OmpA coated beads bound to and were taken in (Fig. 7, B and C). OmpA
bead uptake, but not adherence was pronouncedly inhibited when the assay was performed
at 4°C versus 37°C (S4 Fig.). Beads coated with OmpAG61A, OmpAK64A, OmpAGK6164AA, and
OmpAKK6465AA were significantly compromised in their abilities to bind to and be internalized
by HL-60 cells (Fig. 7, B and C). OmpA bead cellular adherence and entry were significantly in-
hibited and neutralized, respectively, for host cells that had been pretreated with α2,3/6-siali-
dase or α1,3/4-fucosidase (Fig. 7, D and E). Moreover, the sLex-specific antibody, CSLEX1
significantly reduced binding and blocked internalization of OmpA beads into HL-60 cells
(Fig. 7, F and G). KPL-1, an antibody that is specific for and blocks A. phagocytophilum binding
to the PSGL-1 N-terminus [25,79,80], did not affect OmpA bead adherence or uptake (Fig. 7,
H and I). These data indicate that OmpA coated beads bind and enter myeloid cells in a sLex-
dependent manner and require OmpA residues G61 and K64 to optimally do so.

Delineation of the Asp14 binding domain
Of the three invasins that cooperatively function to facilitate A. phagocytophilum infection of
mammalian host cells [19,29,36], only the binding domain of Asp14 had yet to be defined.
Asp14 is a 124-amino acid (13.8 kDa) protein, and its binding domain lies within residues 101
to 124 [29]. To further narrow down this region, antisera were raised against residues 98 to 112
and 113 to 124. Both antisera recognized GST-Asp14, but not GST-Asp141–88 or GST alone
(S5 Fig.). Also, antiserum targeting Asp1498–112 but not Asp14113–124 detected GST-Asp141–112
and each antiserum was specific for the peptide against which it had been raised. Next, the
abilities of anti-Asp1498–112 and anti-Asp14113–124 to inhibit A. phagocytophilum infection of
HL-60 cells were assessed. Incubating DC bacteria with Asp14113–124 antibody reduced the per-
centages of infected cells in a dose-dependent manner, whereas Asp1498–112 antibody had no
effect (Fig. 8A). When used together, antisera against Asp14113–124 and OmpA59–74 reduced A.
phagocytophilum by approximately four-fold (Fig. 8B). The observed blocking effect was signif-
icantly greater than that achieved with either antiserum alone or when either was paired with
antisera that targeted irrelevant regions of OmpA or Asp14. To ensure that the blocking effects
achieved by the OmpA59–74 and Asp14113–124 antisera were specific, fragment antigen binding
(Fab fragment) portions of OmpA23–40, OmpA41–48, OmpA59–74, Asp1498–112, Asp14113–124, or
OmpA59–74 and Asp14113–124 antibodies were prepared and assessed for the ability to inhibit A.
phagocytophilum infection of HL-60 cells. Consistent with results obtained using intact anti-
bodies, OmpA59–74 Fab, Asp14113–124 Fab, and the combination thereof achieved the greatest
reductions in the percentage of infected cells and morulae per cell (Fig. 8, C and D).
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Fig 7. OmpA coated bead binding to and uptake by promyelocytic HL-60 cells involve OmpA residues
G61 and K64 and are dependent on sLex. (A) Scanning electron micrographs depicting OmpA coated
beads bound to and being internalized by HL-60 cells. Arrows point to filopodia-like structures adhered to
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An antisera combination targeting the OmpA, Asp14, and AipA binding
domains pronouncedly inhibits A. phagocytophilum infection of host
cells
We previously showed that a combination of antisera that had been raised against the entireties
of OmpA, AipA, and Asp14 strongly inhibited A. phagocytophilum infection of mammalian
host cells [36]. To refine this blocking approach, DC organisms were treated with a cocktail of
antibodies specific for OmpA59–74, Asp14113–124, and AipA9–21 prior to incubating the bacteria
with HL-60 cells. This antibody combination significantly attenuated infection, reducing the
percentage of infected cells and number of morulae per cell by approximately five-fold (Fig. 9,
A and B). The reduction in infection achieved using the combination antisera was due to effec-
tive blocking of bacterial adhesion to HL-60 cell surfaces, as combination antisera specific for
OmpA59–74, Asp14113–124, and AipA9–21 reduced the numbers of bound A. phagocytophilum
organisms per cell by more than four-fold relative to the same amount of preimmune serum
(Fig. 9C). The observed reductions in bacterial adhesion and infection achieved by targeting all
three binding domains were greater than those achieved using (1) antibodies that targeted only
one or two of the binding domains and (2) combinations of antibodies against one or two of
the binding domains together with antibodies against irrelevant portions of OmpA, Asp14, or
AipA. Thus, targeting the OmpA, Asp14, and AipA binding domains together produced a syn-
ergistic blocking effect that protects host cells from A. phagocytophilum infection.

Discussion
This study identified the OmpA and Asp14 binding domains and defined the OmpA residues
that are critical for adhesion and invasion. The OmpA binding domain lies within amino acids
59 to 74 and it, like the rest of the protein, is highly conserved among A. phagocytophilum
strains known to cause disease in humans and animals. Antibody against OmpA59–74 inhibited
bacterial binding to PSGL-1 CHO cells and infection of HL-60 cells. OmpA59–74 is predicted to
be a solvent exposed alpha helix and part of a cationic surface patch that binds sLex, an interac-
tion that is similar to those between staphylococcal superantigen-like (SSL) protein family
members and sLex. SSL4, SSL5, and SSL11 each use basic residues within cationic surface pock-
ets to interact with α2,3-sialic acid of sLex [40,41,81]. Likewise, other pathogens’ sialic acid
binding proteins, including uropathogenic Escherichia coli sialic acid-specific S fimbrial adhe-
sin [82], pertussis toxin of Bordetella pertussis [43], influenza viral neuraminidase [44], canine
adenovirus 2 capsid protein [83], and rhesus rotovirus VP4 [42] all use basic residues localized
within cationic surface pockets to target sialic acid. The Asp14 binding domain is within amino
acids 113 to 124. Antibody specific for Asp14113–124 abrogated bacterial binding and infection
of host cells. As Asp14 bears no semblance to any known crystal structure, it could not be mod-
eled. However, from the data presented herein it can be inferred that Asp14 amino acids 113 to
124 are exposed on the surfaces of A. phagocytophilum and the invasin itself.

beads. Scale bars are indicated. (B and C) HL-60 cells were incubated with beads coated with OmpA, OmpA
proteins having the indicated amino acids substituted with alanine, or non-coated control beads. The
numbers of bound and internalized beads were determined using immunofluorescence microscopy. (D to I)
HL-60 cells were incubated with α2,3/6-sialidase, α1,3/4-fucosidase, or vehicle only (D and E), sLex antibody
CSLEX1 or IgM isotype control (F and G), or PSGL-1 N-terminus antibody KPL-1 or IgG isotype control (H
and I) before being incubated with OmpA coated or non-coated control beads. The numbers of bound and
internalized beads were assessed using immunofluorescence microscopy. Results in (B) through (I) are the
mean ± SD of triplicate samples and are representative of three independent experiments with similar results.
Statistically significant (** P< 0.005; ***P< 0.001) values are indicated.

doi:10.1371/journal.ppat.1004669.g007
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Fig 8. The Asp14 binding domain is containedwithin amino acids 113 to 124. (A) Pretreatment ofA. phagocytophilumwith Asp14113–124 antiserum inhibits
infection of HL-60 cells in a dose-dependent manner. DC bacteria were incubated with 200 μg/ml of preimmune serum, 200 μg/ml of serum raised against full-
length Asp14, or two-fold serially-diluted concentrations of anti-Asp1498–112 or anti-Asp14113–124 ranging from 0 to 200 μg/ml and then incubated with HL-60
cells. The infection was allowed to proceed for 24 h prior to being assessed by immunofluorescence microscopy for the percentage of infected cells. (B) A
combination of antisera targeting OmpA59–74 and Asp14113–124 inhibits A. phagocytophilum infection of HL-60 cells better than serum targeting either binding
domain alone. DC organisms were exposed to preimmune serum or antisera targeting OmpA59–74, Asp14113–124, OmpA59–74 plus Asp1498–112, or
anti-Asp14113–124 together with OmpA59–74, OmpA23–40, or OmpA43–58 antibodies. The cells were fixed and screened using immunofluorescencemicroscopy to
determine the percentages of infected cells. (C and D) OmpA59–74 and Asp14113–124 Fab fragments effectively inhibit A. phagocytophilum infection of HL-60
cells. DC bacteria were incubated with Fab fragments derived from preimmune serum, antibodies targeting OmpA23–40, OmpA41–58, OmpA59–74, Asp1498–112,
Asp14113–124, or OmpA59–74 Fab fragment together with Asp14113–124 Fab fragment. The cells were fixed and screened to determine the percentages of infected
cells (C) and morulae per cell (D). Results presented in (B) to (D) are relative to host cells that had been incubated with bacteria treated with preimmune serum.
Results presented in (A) and (B) are the means ± SD for three experiments. Results in (C) and (D) are the mean ± SD of triplicate samples and are
representative of two experiments with similar results. Statistically significant (* P< 0.05; ** P< 0.005; ***P< 0.001) values are indicated.

doi:10.1371/journal.ppat.1004669.g008
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Fig 9. A combination of antisera targeting the binding domains of OmpA, Asp14, and AipA blocks A. phagocytophilum infection of mammalian
host cells.DC organisms were incubated with preimmune serum or antibodies specific for OmpA59–74 and Asp14113–124; or AipA9–21, AipA61–84, AipA165–182,
or AipA183–201, either independently or in combination with OmpA59–74 and Asp14113–124 antibodies. Next, the bacteria were incubated with HL-60 cells. The
infection was allowed to proceed for 24 h, after which the host cells were fixed and examined using immunofluorescence microscopy to determine the
percentages of infected cells (A) and the number of morulae per cell (B). (C) To verify that the observed reductions in A. phagocytophilum infection were due
to antisera mediated blocking of bacterial binding to HL-60 cell surfaces, the experiment was repeated except that DC organisms were incubated with
antibodies targeting OmpA59–74 and/or Asp14113–124, and/or AipA9–21 prior to being incubated with host cells, and the numbers of bound bacteria per cell was
assessed. Results presented are relative to host cells that had been incubated with bacteria treated with preimmune serum and are the means ± SD for six
combined experiments. Statistically significant (* P< 0.05; ** P< 0.005; ***P< 0.001) values are indicated.

doi:10.1371/journal.ppat.1004669.g009

A. phagocytophilum Invasin-Receptor Interactions

PLOS Pathogens | DOI:10.1371/journal.ppat.1004669 February 6, 2015 17 / 29



OmpA K64 is essential for and G61 contributes to the ability of OmpA to bind to mammali-
an host cells. These experimental findings support the top two OmpA-sLex docking models,
both of which predicted the involvement of K64 and G61 in interacting with α2,3-sialic acid
and α1,3-fucose of sLex. The actual interactions between OmpA and sLex are likely a hybrid of
those predicted by the two docking models because, while both predicted the involvement of
K64 and G61, one also predicted the involvement of K60, which was found to be negligible for
OmpA to act as a competitive agonist. OmpA K64 and G61 may play functionally conserved
roles among members of the family Anaplasmataceae and the genus Anaplasma. K64 is present
in all Anaplasma and Ehrlichia spp. OmpA proteins, while G61 is conserved among Ana-
plasma but not Ehrlichia spp. OmpA proteins. A.marginale agglutinates bovine red blood cells
in a sialidase-sensitive manner [84], indicating that it interacts with sialylated glycans on eryth-
rocyte surfaces. Given the similarities between A. phagocytophilum and A.marginale OmpA
proteins [19] and the conservation of residues implicated in receptor recognition, it will be
worth investigating whether A.marginale OmpA is important for infection of bovine erythro-
cytes, and, if so, if it involves interactions between conserved OmpA lysine and glycine residues
with sialylated glycans. E. chaffeensisOmpA contributes to infection of monocytic cells [85].
Compared to the conservation exhibited among Anaplasma spp. OmpA proteins, A. phagocy-
tophilum and E. chaffeensis OmpA proteins are more divergent in sequence [19], especially in
the binding domain, which may contribute to these pathogens’ tropisms for different leuko-
cytes. Still, because of its conservation, the E. chaffeensisOmpA residue that corresponds to A.
phagocytophilumOmpA K64 may be involved in binding to a sLex-related glycan on
monocytic cells.

Together with α2,3-sialic acid, α1,3-fucose is critical for A. phagocytophilum binding and in-
fection [21,25–27]. OmpA binds α1,3-fucose, as can be inferred from our observations that re-
combinant OmpA bound poorly to RF/6A endothelial cells from which α1,3/4-fucose residues
had been removed or that had been incubated with the α1,3/6-fucose-specific lectin, AAL. The
ability of OmpA to bind α2,3-sialic acid and α1,3-fucose is consistent with the close proximity
of the two sugar residues to each other in sLex and related glycans and also with OmpA-sLex

molecular docking predictions. Yet, RF/6A cells, which support A. phagocytophilum binding
and infection [19,28,29,31,33,34,36], express very little to no sLex. Rather, they express 6-sulfo-
sLex, which presents α2,3-sialic acid and α1,3-fucose in the same orientation and proximity to
each other as sLex. Recombinant OmpA binding to RF/6A cells was significantly reduced in the
presence of 6-sulfo-sLex antibody, but not sLex antibodies, thereby supporting that 6-sulfo-sLex

is an A. phagocytophilum receptor on these cells. Thus, A. phagocytophilumOmpA interacts
with glycans that present α2,3-sialic acid and α1,3-fucose in a similar manner as sLex.

OmpA by itself functions as both an adhesin and an invasin, as demonstrated by the ability
of His-OmpA to confer adhesive and internalization capabilities to inert beads. Approximately
half of the His-OmpA beads that bound to host cells were internalized, a degree of uptake that
was similar to that reported for C. burnetii OmpA coated beads [86]. Twenty-fold more OmpA
coated beads bound to RF/6A cells than to HL-60 cells. Similarly, recombinant OmpA binding
to RF/6A cells but not to HL-60 cells could be detected by immunofluorescence microscopy
and flow cytometry. Nonetheless, the ability of recombinant OmpA to competitively antago-
nize A. phagocytophilum binding and infection of HL-60 cells demonstrates its ability to bind
to the host cells, but it apparently does so at too low an avidity to remain bound during the
wash steps associated with sample preparation for the detection methods used. The observed
differences in OmpA binding to HL-60 versus RF/6A cells could be due to differences in the
levels of sLex and 6-sulfo-sLex on HL-60 and RF/6A cell surfaces or perhaps due to the presence
of an additional, undefined OmpA receptor on RF/6A cells. Yet another possibility is that the
bacterium binds with a greater avidity to 6-sulfo-sLex than to sLex.
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Because of the essential and cooperative roles that OmpA, Asp14, and AipA play in the A.
phagocytophilum lifecycle [19,26,27,29,36], blocking their ability to function can prevent both
infection and bacterial survival. Moreover, directing the immune response to their binding do-
mains could enhance protective efficacy. In this study, an antibody cocktail specific for the
OmpA, Asp14, and AipA binding domains blocked A. phagocytophilum infection of host cells.
This finding could potentially pave the way for development of a multi-invasin targeting vac-
cine that can protect against or treat human and veterinary granulocytic anaplasmosis. The rel-
evance of this work extends to other obligate intracellular pathogens that use multiple invasins,
including A.marginale [87], E. chaffeensis [85,88,89], spotted fever rickettsiae [90–94], Chla-
mydia spp. [95–99],Mycobacterium spp. [100–102], and Orientia tsutsugamushi [103,104], as
their survival hinges on their abilities to enter host cells.

Materials and Methods

Cell lines and cultivation of A. phagocytophilum
Uninfected and A. phagocytophilum infected (NCH-1 strain) HL-60 cells (ATCC CCL-240)
and RF/6A cells (ATCC CRL-1790, Manassas, VA) were maintained as previously described
[18,28]. CHO (-) and PSGL-1 CHO cells were cultivated as described [105].

Site directed mutagenesis and recombinant proteins
pGST-OmpA, which encodes OmpA19–205 N-terminally fused to GST, was previously con-
structed [19]. Using pGST-OmpA as template and primers from suppl. S1 Table, the Quik-
Change Lightning (Agilent Technologies, Santa Clara, CA) protocol was used per the
manufacturer’s guidelines to perform site-directed insertions and point mutagenesis of the
ompA insert sequence. For site directed insertions, a five-amino acid insert sequence (CLNHL)
was selected based on previous studies that had successfully employed the linker-scanning
method [58,60], which is used to insert peptide “linkers” to disrupt protein binding domains
without perturbing overall protein structure. The sequence chosen for the insertion peptide,
CLNHL, was a consensus sequence based on the most common amino acids at their respective
positions in the insertion peptides used in prior studies [58,60]. The nucleotide sequence,
5'-TGCCTGAACCACCTG-3', which encoded CLNHL, was inserted in the ompA sequence of
pGST-OmpA between ompA nucleotides 102 and 103, 162 and 163, 186 and 187, 201 and 202,
216 and 217, and 231 and 232 to yield plasmids that encoded GST-OmpA proteins bearing
CLNHL inserts between OmpA amino acids 34 and 35, 54 and 55, 62 and 63, 67 and 68, 72
and 73, and 77 and 78, respectively. Likewise, the QuikChange protocol was used to perform
site directed mutagenesis to yield plasmids that encoded GST-OmpA proteins having R32,
D53, K60, G61, K64, K65, E69, and/or E72 converted to alanine. GST-OmpA mutants were ex-
pressed and purified as previously described [19]. Plasmids encoding His-tagged wild type and
site-directed mutant OmpA proteins were generated by amplifying wild type and mutant
ompA sequences using primers containing ligase-independent cloning (LIC) tails and anneal-
ing the amplicons into the pET46 Ek/LIC vector (Novagen, EMDMillipore, Darmstadt, DE)
per the manufacturer’s instructions. His-OmpA proteins were expressed and purified by im-
mobilized metal-affinity chromatography as previously described [106].

Molecular modeling of the OmpA-sLex interaction
To obtain a putative three-dimensional OmpA protein structure, the mature OmpA sequence
was threaded onto the solved crystal structures of proteins with similar sequences using the
PHYRE2 server (www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi) as previously described [19,38].
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Amino acids 19 to 150 (73% of the mature OmpA sequence) were modeled with greater than
90% confidence to known structures for similar proteins (Protein Data Bank [PDB] files 2aiz
[Haemophilus influenzaeOmpP6 peptidoglycan associated lipoprotein (PAL)], 4g4v [Acineto-
bacter baumanni PAL], 4b5c [Burkholderia pseudomallei PAL], 3ldt [Legionella pneumophila
OmpA], 2kgw [Mycobaterium tuberculosis OmpATb]). The remainder of the protein lacked
sufficient homology to any experimentally derived structure, but could be modeled using the
Poing method [38], which was performed as part of the Phyre2 analyses. The sLex-PSGL-1
peptide (residues 61 to 77) and the sLex glycan itself was extracted from the solved crystal
structure of PSGL-1 (PDB 1G1S) in PyMol (www.pymol.org) and saved as an individual PDB
file. Open Babel software was used to convert PDB files to PDBQT (Protein Data Bank, Partial
Charge and Atom Type) format in order to perform OmpA-sLex docking analysis [107]. Auto-
Dock Tools software (autodock.scripps.edu/resources/adt) was used to generate the docking
output files for both the OmpA protein structure and the sLex ligand. The search location for
OmpA was generated in AutoDock Tools by setting a search grid that encompassed OmpA res-
idues 19 to 74 [19]. Molecular docking was performed using AutoDock Vina (http://vina.
scripps.edu/) to identify potential points of interaction between OmpA and sLex [45]. The top
two OmpA-sLex models generated by AutoDock Vina had the same predicted affinity value
of-4.2 kcal/mol and were selected for analysis in PyMol to determine potential points of contact.

Antibodies, reagents, enzyme-linked immunosorbent assay (ELISA),
and western blotting
To generate antisera specific to the OmpA and Asp14 binding domains, peptides correspond-
ing to OmpA residues 23 to 40, 41 to 58, and 59 to 74 and Asp14 residues 98 to 112 and 113 to
124 were synthesized, conjugated to keyhole limpet hemocyanin, administered to rabbits, and
the resulting OmpA and Asp14 peptide-specific sera were affinity-purified by New England
Peptide (Gardner, MA). Each peptide antiserum’s specificity for the peptide against which it
had been raised and for its protein target was determined by ELISA using the TMB substrate
kit (Thermo Scientific, Waltham, MA) following the manufacturer’s instructions or by West-
ern blot analysis as previously described [108]. Mouse anti-AipA peptide antisera have been
previously described [36]. sLex antibodies CSLEX1 (BD Biosciences, San Jose, CA) and KM93
(Millipore, Darmstadt, DE) and PSGL-1 N-terminus-specific antibody KPL-1 (BD Biosciences)
were obtained commercially. Fab fragments of OmpA and Asp14 peptide-specific antisera
were generated using the Fab Preparation Kit (Pierce, Rockford, IL) according to the manufac-
turer’s instructions. Reiji Kannagi (Aichi Medical University, Nagukute, Aichi, Japan) kindly
provided 6-sulfo-sLex antibody, G72. His tag and Alexa Fluor 488-conjugated secondary anti-
bodies and Alexa Fluor 488-conjugated streptavidin were obtained from Invitrogen (Carlsbad,
CA). Biotinylated AAL and MAL II were obtained from Vector Labs (Burlingame, CA).
Glycosidases used in this study were α2,3/6-sialidase (Sigma-Aldrich, St. Louis, MO) and
α1,3/4-fucosidase (Clontech, Mountain View, CA).

Sequence alignments
The NCH-1 gene sequence for ompA (APH0338) was previously determined [19,29,36]. A Pro-
tein BLAST (basic local alignment search tool) [109] search using the NCH-1 OmpA predicted
protein sequence as the query was used to identify homologs in other Anaplasmataceae species
and in A. phagocytophilum strains HZ [50], HGE1 [54], Dog [53], JM [52], MRK [48,49],
CRT35, CRT38 [51], and NorV2 [53], for which the genomes are available [53,110]. All of
these strains except for NorV2 had been originally isolated from clinically affected humans and
animals. HZ and HGE1 were recovered from human patients in Westchester, NY, USA and
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Minnesota, USA, respectively [50,54]. The Dog and JM strains were isolated from a dog in
Minnesota, USA and a meadow jumping mouse (Zapus hudsonius) in Camp Ripley, MN, USA
[52,53]. MRK had been recovered from a horse in California, USA [48,49]. CRT35 and CRT38
are isolates of the A. phagocytophilum Ap-variant 1 strain that were recovered from ticks col-
lected at Camp Ripley, MN, USA [51]. NorV2 is a naturally occurring A. phagocytophilum iso-
late that was maintained in an experimentally infected lamb, exhibits reduced virulence in
sheep, and differs in its 16S rRNA gene sequence when compared to other sheep isolates
[53,111]. OmpA sequence alignments were generated using Clustal W [112].

Binding of recombinant OmpA proteins to host cells
For binding of His- or GST-tagged OmpA proteins to host cells, RF/6A or HL-60 cells were
incubated with 4 μM recombinant protein in culture media for 1 h in a 37°C incubator supple-
mented with 5% CO2 and a humidified atmosphere. To assess for the presence of sLex or
6-sulfo-sLex on RF/6A cell surfaces, the cells were fixed in 4% PFA in PBS for 1 h at room
temperature followed by incubation with CSLEX1, KM93, or G72 for 1 h at room temperature.
Antibody incubations and washes were performed as described previously [79]. Spinning-disk
confocal microscopy using an Olympus BX51 microscope affixed with a disk-spinning unit
(Olympus, Center Valley, PA) and/or flow cytometry using a BD FACS Canto II (BD Biosci-
ences) were performed to assess binding of antibodies or His-OmpA proteins to host cell
surfaces as previously described [19,29]. In some cases, RF/6A cells were pretreated with
α2,3/6-sialidase, α1,3/4-fucosidase, AAL, MAL II, or sLex- or 6-sulfo-sLex-specific antibodies
prior to incubation with His-OmpA.

Competitive inhibition of A. phagocytophilum binding and infection
Competitive inhibition assays utilizing recombinant protein or antibody were performed and
analyzed by spinning-disk confocal microscopy as previously described [19,29]. To determine if
A. phagocytophilum binding to PSGL-1 CHO cells or infection of RF/6A cells involved bacterial
binding to host cell surface fucose residues, the host cells were treated with α1,3/4-fucosidase
(10 μU/mL) prior to the addition of DC organisms and assessment for bacterial binding or
infection as previously described [18,19]. For competitive inhibition assays using antisera raised
against OmpA or Asp14 peptides, A. phagocytophilumDC bacteria were incubated with serially
diluted concentrations of antiserum. Preimmune rabbit serum (200 μg/mL) was a negative
control. Assays using combinations of two or three different OmpA, Asp14, or AipA peptide
antibodies were performed using 100 μg/mL per antibody. Preimmune serum (200 μg/mL or
300 μg/mL, based on the combined total of peptide antisera) served as a negative control. Com-
petitive inhibition assays using OmpA and/or Asp14 Fab fragments were performed exactly as
described for antisera. Preimmune Fab fragments served as a negative control.

OmpA coated bead uptake assay
1.8 x 107 red fluorescent sulfate-modified 1.0 μm diameter microfluorospheres (Life Technolo-
gies, Carlsbad, CA) were mixed by rotation with 8 μg of His-OmpA, or His-OmpA proteins
bearing alanine substitutions, in 400 μL of 50 mM phosphate-buffered saline (PBS) supple-
mented with 0.9% NaCl at room temperature overnight in the absence of light. The His-OmpA
coated beads were centrifuged at 5,000 g for 25 min, followed by three washes in 50 mM PBS.
Coated beads were resuspended in 400 μL of 50 mM PBS, 0.9% NaCl, 1% BSA and stored at
4°C until use. To validate that the beads were conjugated with His-OmpA, 1.8x104 of the beads
were screened by immunofluorescent microscopy using mouse polyclonal OmpA antisera fol-
lowed by Alexa Fluor 488-conjugated goat anti-mouse IgG as described [19]. To assess binding
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to and uptake by HL-60 or RF/6A cells, His-OmpA coated beads or uncoated control beads
were resuspended in the appropriate culture medium and added to host cells at a concentration
of 500 beads/cell. For adherent RF/6A cells, beads were centrifuged onto the host cells at
1,000 g for 5 min. The cells plus beads were incubated for 1 h at 37°C in a 5% CO2 supple-
mented humidified incubator followed by washing the cells three times with PBS to remove
unbound beads. Non-adherent HL-60 cells were mixed with the beads in suspension,
incubated as described above, and three PBS washes were performed intermittently between
five-min spins performed at 300 g. To assess binding, the host cells were fixed in 4% parafor-
maldehyde (PFA) in PBS, mounted with ProLong Antifade Gold gel mounting medium
containing 4',6-diamidino-2-phenylindole (DAPI) (Invitrogen), and analyzed by spinning-disk
confocal microscopy as previously described [19]. For uptake assays, after the final wash, the
host cells were resuspended in culture medium and cultivated for an additional 7 h. The cells
were washed three times in PBS, incubated with a 0.25% trypsin solution (Hyclone, Thermo
Scientific, Waltham, MA) for 10 min at 37°C to cleave host cell surface proteins and conse-
quently remove non-internalized beads, and washed three times with PBS. HL-60 cells were
cytospun onto glass microscope slides and fixed, mounted, and screened as described above.
RF/6A cells were added to wells containing coverslips, incubated overnight in a 37°C incubator
supplemented with 5% CO2 and a humidified atmosphere to allow the host cells to adhere
prior to further processing. To determine if His-OmpA coated bead binding or uptake was
temperature sensitive, some experiments were performed at 4°C. To assess the contribution
of sLex or PSGL-1 determinants to His-OmpA coated bead binding and uptake, host cells were
pretreated with α2,3-sialidase (5 μg/mL), α1,3/4-fucosidase (10 μU/mL), sLex-specific antibody
CSLEX1 (10 μg/mL), PSGL-1 N-terminus-specific antibody KPL-1 (10 μg/mL), or vehicle or
isotype controls as previously described [19] prior to the bead binding and uptake assays.

Scanning electron microscopy
Coverslips of RF/6A cells were incubated with OmpA coated or control beads as described
above. The coverslips were fixed in 2.0% glutaraldehyde in 0.1 M sodium cacodylate for 1 h at
room temperature. The coverslips were subjected to two 10-min washes in 0.1 M sodium cado-
dylate and fixed in 1.0% osmium tetroxide in 0.1 M sodium cacodylate for 1 h. The coverslips
were rinsed two more times with 0.1 M sodium cadodylate buffer for 10 min each. The samples
were dehydrated by successive 5-min incubations in 50% ethanol, 70% ethanol, 80% ethanol,
95% ethanol, and three 10-min washes in 10% ethanol. Next, the samples were incubated three
times for 30 min each in hexamethyldisilazane, air-dried, mounted with silver paint, and sput-
ter coated with gold before imaging on a Zeiss EVO 50XVP scanning electron microscope
(Thornwood, NY). For HL-60 cells incubated in suspension with beads, the samples were re-
tained on a 0.1 μm filter and processed exactly as described for RF/6A cells.

Statistical analyses
The Prism 5.0 software package (Graphpad, San Diego, CA) was used to determine the statisti-
cal significance of data using one-way analysis of variance (ANOVA) or the Student’s T-test, as
previously described [19]. Statistical significance was set to P< 0.05.

Supporting Information
S1 Fig. Validation of OmpA peptide-specific antisera. Antibodies raised against peptides cor-
responding to OmpA23–40, OmpA41–58, and OmpA59–74 were used to screen Western-blotted
GST-tagged OmpA, OmpA19–74, OmpA75–205, and GST alone (A) or Western-blotted His-
OmpA or His-Asp14 (B) to confirm that each antibody was specific for the recombinant forms
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of OmpA that contained the target peptide sequences. (C) ELISA in which OmpA23–40,
OmpA41–58, and OmpA59–74 antibodies were serially diluted two-fold from 1:200 to 1:409,600
and used to screen wells coated with GST, GST-OmpA, GST-OmpA19–74, GST-OmpA75–205,
or peptides corresponding to OmpA23–40, OmpA41–58, or OmpA59–74. Results shown are repre-
sentative of three independent experiments with similar results.
(TIF)

S2 Fig. OmpA is highly conserved among A. phagocytophilum isolates and its key binding
residues exhibit variable conservation among Anaplasmataceae species. (A) Alignment of
OmpA amino acid sequence from the A. phagocytophilum NCH-1 strain (isolated from a
human patient in Massachusetts), with OmpA sequences from A. phagocytophilum strains
HZ (human; New York), HGE1 (human; Minnesota), Dog (Minnesota), JM (jumping mouse;
Minnesota), MRK (horse; California), ApVar-1 isolates CRT35 and CRT38 (both from ticks;
Minnesota), and NorV2 (lamb; Norway). (B) Alignment of NCH-1 OmpA amino acids 19 to
74 with corresponding regions of OmpA homologs from the A.marginale St. Maries strain
(AM854), A.marginale Florida strain (AMF640), A.marginale subsp. centrale Israel starin
(ACIS00486) E. chaffeensis Arkansas strain (ECH0462), Ehrlichia canis Jake strain (Ecaj0563),
and the Ehrlichia ruminantiumWelgevonden strain (Erum5620). The binding domain corre-
sponding to NCH-1 OmpA residues 59 to 74 is highlighted with blue in (A) and (B). Red text
in (A) and (B) denotes amino acids that were mutated to alanine for the experiments presented
in Fig. 3 panels B to D. Numbers above the alignments in (A) and (B) denote amino acid
position numbers. The arrows in (A) and (B) denote A. phagocytophilum OmpA G61 and
K64, which were predicted to form interactions with sLex in Fig. 2 panels D and E and were
shown to be critical for OmpA to bind to and mediate infection of mammalian host cells in
Figs. 1 and 3.
(TIF)

S3 Fig. Treatment with α1,3/4-fucosidase reduces A. phagocytophilum binding to PSGL-1
CHO cells and binding to and infection of RF/6A endothelial cells. PSGL-1 CHO cells
(A) and RF/6A cells (B and C) were treated with α1,3/4-fucosidase (+ fucosidase) or vehicle con-
trol (- fucosidase). Fucosidase- and mock-treated cells were incubated with A. phagocytophilum
DC organisms. Following the removal of unbound bacteria, the infection of RF/6A cells was
allowed to proceed for 24 h prior to being assessed, while bacterial binding to PSGL-1 CHO and
RF/6A cells was examined immediately. The mean number (± SD) of bound DC bacteria per
PSGL-1 CHO (A) or RF/6A cell (B) or percentage of infected RF/6A cells (C) were determined
using immunofluorescence microscopy. Results shown are the means ± SD for three combined
experiments. Statistically significant (���P< 0.001) values are indicated.
(TIF)

S4 Fig. OmpA coated bead uptake by promyelocytic HL-60 cells is inhibited at 4°C.HL-60
cells were incubated with OmpA coated beads or non-coated control beads at 37°C or 4°C. The
mean numbers (± SD) of bound (A) and internalized beads (B) were determined using immu-
nofluorescence microscopy. Results presented are representative of three experiments per-
formed in triplicate with similar results. Statistically significant (���P< 0.001) values
are indicated.
(TIF)

S5 Fig. Validation of Asp14 peptide-specific antisera. Antibodies raised against peptides cor-
responding to Asp1498–112 or Asp14113–124 were used to screen Western-blotted GST-Asp14,
GST-Asp141–88, GST-Asp141–112, and GST alone (A) or Western-blotted His-Asp14 or His-
OmpA (B) to confirm that each antibody was specific for the Asp14 target peptide sequences.
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(C) ELISA in which serially diluted antibodies raised against Asp1498–112 and Asp14113–124
were used to screen wells coated with GST, GST-Asp14, GST-Asp141–112, GST-Asp141–88, or
peptides corresponding to Asp1498–112 or Asp14113–124. Results shown are representative of
three independent experiments with similar results.
(TIF)

S1 Table. OmpA oligonucleotides used in this study.
(DOCX)
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