564 research outputs found

    Effect of Hypoxia on the Oxygen Uptake Response to an Exhaustive Severe Intensity Run

    Get PDF
    It has been shown that highly aerobically trained individuals are unable to achieve maximal oxygen uptake (O2 max) during exhaustive running lasting ~2 min despite sufficient time for the response (Draper and Wood, 2005). However, hypoxia offers the opportunity to study the O2 response to an exhaustive run relative to a reduced O2 max. The purpose of the current study was to explore whether there is a difference in the percentage of O2 max attained (during a 2 minute exhaustive run) in normoxia and hypoxia. Fourteen trained middle-distance runners (mean ± SD; age 21.4 ± 3.4 y, height 1.76 ± 0.05 m, mass 66.0 ± 7.0 kg, O2 max 67.0 ± 5.2 ml.kg-1.min-1) volunteered for this study. Participants completed exhaustive treadmill ramp tests and square-wave tests (lasting 2 minutes), in normoxia and hypoxia (FiO2 0.13). Oxygen uptake was determined on a breath-by-breath basis throughout each test. The O2 data (excluding the first 15s) from the square-wave tests were modelled using a mono-exponential function. Repeated measures ANOVA (condition x test) was used to investigate the differences in O2 peak and post-hoc related samples t-tests for each condition were performed to explore a significant interaction. There was a significant interaction effect for O2 peak (P < 0.001). Post hoc tests revealed that the O2 peak achieved during the square-wave test was lower than the ramp test in normoxia (P < 0.001) but not in hypoxia (P = 0.49). The mean ± SD percentage of the ramp O2 peak achieved was; 86 ±0.06 vs. 102 ± 0.08%, for normoxia and hypoxia respectively. The phase II time constant was different between conditions (P = 0.029) demonstrating a slower oxygen uptake response to exercise in hypoxia (mean ± SD; 12.7 ± 2.8 vs. 10.4 ± 2.6 seconds, for hypoxia and normoxia respectively). The findings of the current study support the findings of Draper and Wood (2005) that suitably trained individuals do not achieve maximal oxygen uptake in running of this intensity. However, the present study has demonstrated that when maximal oxygen uptake is reduced through hypoxia it may then be achieved

    Effects of priming and pacing strategy on VO2 kinetics and cycling performance

    Get PDF
    Copyright © 2015 Human KineticsThis is the author accepted manuscript. The final version is available from Human Kinetics via the DOI in this record.Purpose: To assess whether combining prior ‘priming’ exercise with an all-out pacing strategy was more effective at improving O2 uptake (VO2) kinetics and cycling performance than either intervention administered independently. Methods: Nine males completed target-work cycling performance trials using a self-paced or all-out pacing strategy with or without prior severe-intensity (70%Δ) priming exercise. Breath-by-breath pulmonary VO2 and cycling power output were measured during all trials. Results: Compared to the self-paced-unprimed control trial (22 ± 5 s), the VO2 mean response time (MRT) was shorter (VO2 kinetics was faster) with all-out pacing (17 ± 4 s) and priming (17 ± 3 s), with the lowest VO2 MRT observed when all-out pacing and priming were combined (15 ± 4 s) (P0.05). Conclusions: These findings suggest that combining an all-out start with severe-intensity priming exercise additively improves the VO2 MRT, but not total O2 consumption and cycling performance since these were improved by a similar magnitude in both primed trials relative to the self-paced-unprimed control condition. Therefore, these results support the use of priming exercise as a pre-competition intervention to improve oxidative metabolism and performance during short-duration high-intensity cycling exercise, independent of the pacing strategy adopted

    THE RELATIONSHIP OF ANTHROPOMETRY AND BODY COMPOSITION WITH RUNNING ECONOMY

    Get PDF
    The aim of this study was to investigate the relationships of anthropometry and body composition with running economy within a large heterogeneous cohort of runners. Locomotory energy cost was determined in ninety-four healthy male and female endurance runners across a range of performance standards. Various anthropometric and body composition measurements were taken manually and via DXA scans. The relationships between anthropometry and running economy were assessed using independent Pearson’s correlation and stepwise multiple linear regression. Three parameters, normalised neck and calf perimeters and normalised whole body bone mass explained 30% of the variance in locomotory energy cost. Low locomotory energy cost was related solely to parameters indicating relative slenderness of the body

    The maximal metabolic steady state: redefining the ‘gold standard’

    Get PDF
    The maximal lactate steady state (MLSS) and the critical power (CP) are two widely used indices of the highest oxidative metabolic rate that can be sustained during continuous exercise and are often considered to be synonymous. However, while perhaps having similarities in principle, methodological differences in the assessment of these parameters typically result in MLSS occurring at a somewhat lower power output or running speed and exercise at CP being sustainable for no more than approximately 20–30 min. This has led to the view that CP overestimates the ‘actual’ maximal metabolic steady state and that MLSS should be considered the ‘gold standard’ metric for the evaluation of endurance exercise capacity. In this article we will present evidence consistent with the contrary conclusion: i.e., that (1) as presently defined, MLSS naturally underestimates the actual maximal metabolic steady state; and (2) CP alone represents the boundary between discrete exercise intensity domains within which the dynamic cardiorespiratory and muscle metabolic responses to exercise differ profoundly. While both MLSS and CP may have relevance for athletic training and performance, we urge that the distinction between the two concepts/metrics be better appreciated and that comparisons between MLSS and CP, undertaken in the mistaken belief that they are theoretically synonymous, is discontinued. CP represents the genuine boundary separating exercise in which physiological homeostasis can be maintained from exercise in which it cannot, and should be considered the gold standard when the goal is to determine the maximal metabolic steady state

    The Role of Cargo Proteins in GGA Recruitment

    Get PDF
    Coat proteins are recruited onto membranes to form vesicles that transport cargo from one compartment to another, but the extent to which the cargo helps to recruit the coat proteins is still unclear. Here we have examined the role of cargo in the recruitment of Golgi-localized, γ-ear-containing, ADP ribosylation factor (ARF)-binding proteins (GGAs) onto membranes in HeLa cells. Moderate overexpression of CD8 chimeras with cytoplasmic tails containing DXXLL-sorting signals, which bind to GGAs, increased the localization of all three GGAs to perinuclear membranes, as observed by immunofluorescence. GGA2 was also expressed at approximately twofold higher levels in these cells because it was degraded more slowly. However, this difference only partially accounted for the increase in membrane localization because there was a approximately fivefold increase in GGA2 associated with crude membranes and a ∼12-fold increase in GGA2 associated with clathrin-coated vesicles (CCVs) in cells expressing CD8-DXXLL chimeras. The effect of cargo proteins on GGA recruitment was reconstituted in vitro using permeabilized control and CD8-DXXLL-expressing cells incubated with cytosol containing recombinant GGA2 constructs. Together, these results demonstrate that cargo proteins contribute to the recruitment of GGAs onto membranes and to the formation of GGA-positive CCVs
    • …
    corecore