656 research outputs found

    Low-density colloid centrifugation removes bacteria from boar semen doses after spiking with selected species

    Get PDF
    Single-layer centrifugation (SLC) with a low-density colloid is an efficient method for removing contaminating microorganisms from boar semen while recovering most spermatozoa from the original sample. This study tested the performance of this technique, using 50-ml tubes, by spiking commercial semen doses prepared without antibiotics with selected bacterial species followed by storage at 17 degrees C. The doses were spiked up to 102/ml CFU (colony forming units) of the bacteria Burkholderia ambifaria, Pseudomonas aeruginosa, and Staphylococcus sim-ulans. The semen was processed by SLC (15 ml of sample and 15 ml of colloid) with the colloid Porcicoll at 20% (P20) and 30% (P30), with a spiked control (CTL) and an unspiked control (CTL0), analyzing microbiology and sperm quality on days 0, 3 and 7. SLC completely removed B. ambifaria and S. simulans, considerably reducing P. aeruginosa and overall contamination (especially P30, similar to 104 CFU/ml of total contamination on day 7, median). Sperm viability was lower in P20 and P30 samples at day 0, with higher cytoplasmic ROS. Still, results were similar in all groups on day 3 and reversed on day 7, indicating a protective effect of SLC (possibly directly by removal of damaged sperm and indirectly because of lower bacterial contamination). Sperm chromatin was affected by the treatment (lower DNA fragmentation and chromatin decondensation) and storage (higher overall condensation on day 7 as per chromomycin A3 and monobromobimane staining). In conclusion, SLC with low-density colloids can remove most bacteria in a controlled contamination design while potentially improving sperm quality and long-term storage at practical temperatures

    Novel efficient genome-wide SNP panels for the conservation of the highly endangered Iberian lynx

    Get PDF
    Background: The Iberian lynx (Lynx pardinus) has been acknowledged as the most endangered felid species in the world. An intense contraction and fragmentation during the twentieth century left less than 100 individuals split in two isolated and genetically eroded populations by 2002. Genetic monitoring and management so far have been based on 36 STRs, but their limited variability and the more complex situation of current populations demand more efficient molecular markers. The recent characterization of the Iberian lynx genome identified more than 1.6 million SNPs, of which 1536 were selected and genotyped in an extended Iberian lynx sample. Methods: We validated 1492 SNPs and analysed their heterozygosity, Hardy-Weinberg equilibrium, and linkage disequilibrium. We then selected a panel of 343 minimally linked autosomal SNPs from which we extracted subsets optimized for four different typical tasks in conservation applications: individual identification, parentage assignment, relatedness estimation, and admixture classification, and compared their power to currently used STR panels. Results: We ascribed 21 SNPs to chromosome X based on their segregation patterns, and identified one additional marker that showed significant differentiation between sexes. For all applications considered, panels of autosomal SNPs showed higher power than the currently used STR set with only a very modest increase in the number of markers. Conclusions: These novel panels of highly informative genome-wide SNPs provide more powerful, efficient, and flexible tools for the genetic management and non-invasive monitoring of Iberian lynx populations. This example highlights an important outcome of whole-genome studies in genetically threatened species

    Podocalyxin Is a Novel Polysialylated Neural Adhesion Protein with Multiple Roles in Neural Development and Synapse Formation

    Get PDF
    Neural development and plasticity are regulated by neural adhesion proteins, including the polysialylated form of NCAM (PSA-NCAM). Podocalyxin (PC) is a renal PSA-containing protein that has been reported to function as an anti-adhesin in kidney podocytes. Here we show that PC is widely expressed in neurons during neural development. Neural PC interacts with the ERM protein family, and with NHERF1/2 and RhoA/G. Experiments in vitro and phenotypic analyses of podxl-deficient mice indicate that PC is involved in neurite growth, branching and axonal fasciculation, and that PC loss-offunction reduces the number of synapses in the CNS and in the neuromuscular system. We also show that whereas some of the brain PC functions require PSA, others depend on PC per se. Our results show that PC, the second highly sialylated neural adhesion protein, plays multiple roles in neural development

    Morphological Study and Dielectric Behavior of Nonisothermally Crystallized Poly(ethylene naphthalate) Nanocomposites as a Function of Graphene Content

    Get PDF
    Morphological evolution and dielectric properties of poly(ethylene naphthalate)- (PEN-) graphene nanocomposites nonisothermally crystallized have been investigated. PEN-graphene nanocomposites containing 0.01, 0.025, 0.05, 0.075, and 0.1 wt% of graphene were prepared by melt blending in a mini twin screw extruder. The results showed that graphene exhibited a superior influence on morphological and conformational structure of PEN during nonisothermal crystallization at low graphene contents. Crystallization temperature (Tc) was found to be increased up to 18°C supporting the high nucleating activity of graphene layers. Wide angle X-ray diffraction (WAXD) and Fourier Transform Infrared Spectroscopy (FTIR) indicated that graphene modifies the conformation of PEN chains promoting crystallinity and favoring the evolution from α to β crystalline form with homogeneous lamellar thickness. It may be attributed to the structural similarity between naphthalene rings and graphene structure and to π-π interactions during nucleation. Dielectric behavior was found to be a function of graphene content where the nanocomposites changed from dielectric to low conducting material when passing from 0.075 to 0.1 wt% of graphene content. This phenomenon permits having a wide range of properties to fit a wide variety of applications required to store electrical energy of low voltage

    Increased ventral striatal volume in college-aged binge drinkers

    Get PDF
    BACKGROUND Binge drinking is a serious public health issue associated with cognitive, physiological, and anatomical differences from healthy individuals. No studies, however, have reported subcortical grey matter differences in this population. To address this, we compared the grey matter volumes of college-age binge drinkers and healthy controls, focusing on the ventral striatum, hippocampus and amygdala. METHOD T1-weighted images of 19 binge drinkers and 19 healthy volunteers were analyzed using voxel-based morphometry. Structural data were also covaried with Alcohol Use Disorders Identification Test (AUDIT) scores. Cluster-extent threshold and small volume corrections were both used to analyze imaging data. RESULTS Binge drinkers had significantly larger ventral striatal grey matter volumes compared to controls. There were no between group differences in hippocampal or amygdalar volume. Ventral striatal, amygdalar, and hippocampal volumes were also negatively related to AUDIT scores across groups. CONCLUSIONS Our findings stand in contrast to the lower ventral striatal volume previously observed in more severe forms of alcohol use disorders, suggesting that college-age binge drinkers may represent a distinct population from those groups. These findings may instead represent early sequelae, compensatory effects of repeated binge and withdrawal, or an endophenotypic risk factor

    Building the Future Therapies for Down Syndrome: The Third International Conference of the T21 Research Society

    Get PDF
    Research focused on Down syndrome has increased in the last several years to advance understanding of the consequences of trisomy 21 (T21) on molecular and cellular processes and, ultimately, on individuals with Down syndrome. The Trisomy 21 Research Society (T21RS) is the premier scientific organization for researchers and clinicians studying Down syndrome. The Third International Conference of T21RS, held June 6–9, 2019, in Barcelona, Spain, brought together 429 scientists, families, and industry representatives to share the latest discoveries on underlying cellular and molecular mechanisms of T21, define cognitive and behavioral challenges and better understand comorbidities associated with Down syndrome, including Alzheimer’s disease and leukemia. Presentation of cutting-edge results in neuroscience, neurology, model systems, psychology, cancer, biomarkers and molecular and phar­ma­cological therapeutic approaches demonstrate the compelling interest and continuing advancement in all aspects of understanding and ameliorating conditions associated with T21

    Extreme genomic erosion after recurrent demographic bottlenecks in the highly endangered Iberian lynx

    Get PDF
    Background: Genomic studies of endangered species provide insights into their evolution and demographic history, reveal patterns of genomic erosion that might limit their viability, and offer tools for their effective conservation. The Iberian lynx (Lynx pardinus) is the most endangered felid and a unique example of a species on the brink of extinction. Results: We generate the first annotated draft of the Iberian lynx genome and carry out genome-based analyses of lynx demography, evolution, and population genetics. We identify a series of severe population bottlenecks in the history of the Iberian lynx that predate its known demographic decline during the 20th century and have greatly impacted its genome evolution. We observe drastically reduced rates of weak-to-strong substitutions associated with GC-biased gene conversion and increased rates of fixation of transposable elements. We also find multiple signatures of genetic erosion in the two remnant Iberian lynx populations, including a high frequency of potentially deleterious variants and substitutions, as well as the lowest genome-wide genetic diversity reported so far in any species. Conclusions: The genomic features observed in the Iberian lynx genome may hamper short- and long-term viability through reduced fitness and adaptive potential. The knowledge and resources developed in this study will boost the research on felid evolution and conservation genomics and will benefit the ongoing conservation and management of this emblematic species

    Building the Future Therapies for Down Syndrome:The Third International Conference of the T21 Research Society

    Get PDF
    Research focused on Down syndrome has increased in the last several years to advance understanding of the consequences of trisomy 21 (T21) on molecular and cellular processes and, ultimately, on individuals with Down syndrome. The Trisomy 21 Research Society (T21RS) is the premier scientific organization for researchers and clinicians studying Down syndrome. The Third International Conference of T21RS, held June 6-9, 2019, in Barcelona, Spain, brought together 429 scientists, families, and industry representatives to share the latest discoveries on underlying cellular and molecular mechanisms of T21, define cognitive and behavioral challenges and better understand comorbidities associated with Down syndrome, including Alzheimer's disease and leukemia. Presentation of cutting-edge results in neuroscience, neurology, model systems, psychology, cancer, biomarkers and molecular and phar-ma-cological therapeutic approaches demonstrate the compelling interest and continuing advancement in all aspects of understanding and ameliorating conditions associated with T21
    corecore