2,335 research outputs found

    Bouncing states of a droplet on a liquid surface under generalized forcing

    Get PDF
    Droplets can exhibit complex dynamics when vertically and sinusoidally forced by a liquid surface from which they remain separated by a thin air cushion. Here we extend previous studies to include a family of periodic forcing functions that vary smoothly from sinusoidal to square wave by changing a single parameter. Through analytical and numerical work we find that the dynamics of the droplets and transitions between regular and chaotic regimes are effectively controlled by the impulse imparted on the droplets over a half-period. We also find that having nonsinusoidal forcing lowers the threshold amplitudes for most of the dynamical regimes. This is explained on the basis of a correlation between impulse increases and subsequent energy increases

    Ratchet universality in the bidirectional escape from a symmetric potential well

    Get PDF
    The present work discusses symmetry-breaking-induced bidirectional escape from a symmetric metastable potential well by the application of zero-average periodic forces in the presence of dissipation. We characterized the interplay between heteroclinic instabilities leading to chaotic escape and breaking of a generalized parity symmetry leading to directed ratchet escape to an attractor either at infinity or at -infinity. Optimal enhancement of directed ratchet escape is found to occur when the wave form of the zero-average periodic force acting on the damped driven oscillator matches as closely as possible to a universal wave form, as predicted by the theory of ratchet universality. Specifically, the optimal approximation to the universal force triggers the almost complete destruction of the nonescaping basin for driving amplitudes which are systematically lower than those corresponding to a symmetric periodic force having the same period. We expect that this work could be potentially useful in the control of elementary dynamic processes characterized by multidirectional escape from a potential well, such as forced chaotic scattering and laser-induced dissociation of molecular systems, among others

    Scaling behavior of the dipole coupling energy in two-dimensional disordered magnetic nanostructures

    Full text link
    Numerical calculations of the average dipole-coupling energy Eˉdip\bar E_\mathrm{dip} in two-dimensional disordered magnetic nanostructures are performed as function of the particle coverage CC. We observe that Eˉdip\bar E_\mathrm{dip} scales as EˉdipCα\bar E_\mathrm{dip}\propto C^{\alpha^*} with an unusually small exponent α0.8\alpha^*\simeq 0.8--1.0 for coverages C20C\lesssim20%. This behavior is shown to be primarly given by the contributions of particle pairs at short distances, which is intrinsically related to the presence of an appreciable degree of disorder. The value of α\alpha^* is found to be sensitive to the magnetic arrangement within the nanostructure and to the degree of disorder. For large coverages C20C\gtrsim20% we obtain EˉdipCα\bar E_\mathrm{dip}\propto C^\alpha with α=3/2\alpha=3/2, in agreement with the straighforward scaling of the dipole coupling as in a periodic particle setup. Taking into account the effect of single-particle anisotropies, we show that the scaling exponent can be used as a criterion to distinguish between weakly interacting (α1.0\alpha^* \simeq 1.0) and strongly interacting (α0.8\alpha^* \simeq 0.8) particle ensembles as function of coverage.Comment: accepted for publication in Phys.Rev.

    Estudio cinético de la desdiazoación en medio acuoso del tetrafluorborato de bencenodiazonio

    Get PDF
    The kinetic analyses carried out at different temperatures (20ºC - 40ºC) indicate that the dediazoniation process of thebenzenediazonium ion (BZ) is of the order of one, with BZ at A = 2,3.1015 s-1 and Ea = 112,5 kJ.mol-1 for the Arrheniusequation, and ΔH‡ = 110,0 kJ.mol-1 and ΔS‡ = 40,7 J.K-1.mol-1 for the Eyring equation. The chromatographic resultsreveal that BZ decomposes through a heterolytic process mediated by the aryl ion. The presence of Cu(I) or Cu(II) saltsand ascorbic acid produce a change in the reaction mechanism. The intermediate compounds produced in these conditionsare stable species that may be transported in the bloodstream. The model studied suggests a possible explanation for thelocalisation of tumours produced by the administration of BZ in rats.Los análisis cinéticos realizados a diferentes temperaturas (20º C - 40º C) indican que el proceso de desdiazoacióndel ion bencenodiazonio (BZ) es de orden uno respecto a BZ siendo A = 2,3.1015 s-1 y Ea = 112,5 kJ.mol-1 en laecuación de Arrhenius así como ΔH‡ = 110,0 kJ.mol-1 y ΔS‡ = 40,7 J.K-1.mol-1 para la ecuación de Eyring. Losresultados cromatográficos revelan que BZ se descompone por un proceso heterolítico mediado por el catión arilo.La presencia de sales Cu(I) o de Cu(II) y ácido ascórbico produce un cambio del mecanismo de reacción. Loscompuestos intermedios originados en estas condiciones son especies estables que pueden ser transportadas en lasangre. El modelo estudiado sugiere una posible explicación para la localización descrita en la literatura para lostumores producidos por la administración de BZ a ratas

    SRSF1-dependent nuclear export of C9ORF72 repeat-transcripts: targeting toxic gain-of-functions induced by protein sequestration as a selective therapeutic strategy for neuroprotection

    Get PDF
    Microsatellite repeat expansions cause several incurable and lethal neurodegenerative disorders including ataxias, myotonic dystrophy, Huntington's disease and C9ORF72-linked amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Abnormal repeat transcripts generated from the expanded loci are substrates of repeat-associated non-AUG (RAN) translation, an unconventional form of translation leading to the production of polymeric repeat proteins with cytotoxic and aggregating properties. The mechanisms involved in the pathogenesis of microsatellite repeat expansion disorders remain a hotly debated topic. They are shared between toxic loss/gain of functions due to intranuclear RNA foci that sequesters RNA-binding proteins and RAN translation of repeat proteins in the cytoplasm. We recently elucidated the molecular mechanism driving the nuclear export of C9ORF72 repeat transcripts and showed for the first time that this pathway can be manipulated to confer neuroprotection. Strikingly, we discovered that intron-retaining C9ORF72 repeat transcripts hijack the physiological NXF1-dependent export pathway by selective RNA-repeat sequestration of SRSF1. Antagonizing SRSF1 and the nuclear export of C9ORF72 repeat transcripts promoted in turn the survival of patient-derived motor neurons and suppressed neurodegeneration-associated motor deficits in Drosophila (Hautbergue et al. Nature Communications 2017; 8:16063). In this invited Research Highlight review, we aim to place this work in the context of our previous studies on the nuclear export of mRNAs, provide a summary of the published research and highlight the significance of these findings as a novel therapeutic strategy for neuroprotection in C9ORF72-ALS/FTD. In addition, we emphasize that protein sequestration, often thought as of inducing loss-of-function mechanisms, can also trigger unwanted protein interactions and toxic gain-of-functions

    A moderate protein diet does not cover the requirements of growing rabbits with high growth rate

    Full text link
    [EN] Genetic selection for feed efficiency has increased the growth rate and requirements of growing rabbits, while the protein content of commercial feeds has been adjusted to avoid digestive disorders. The aim of this work was to evaluate how a diet with moderate levels of protein content [146 g crude protein (CP)/kg] could be affecting protein and amino acids acquisition depending on the growth rate of the animals. From 189 weaned rabbits (28 days old), only 41 animals were selected at 42 days, in order to ensure the greatest variability for growth rate during fattening. To achieve this goal, animals came from three genetic lines: H and LP (maternal lines selected by litter size) and R (paternal line selected for growth rate), characterised by normal, moderate and high growth rate during the fattening period, respectively. Apparent faecal digestibility of dry matter (DM), CP and gross energy (GE) of the diet from 49-53 days of age, as well as the ileal apparent digestibility of DM, CP and amino acids at 63 days of age, was determined in all the selected animals. Protein, energy and amino acids retained in the empty body during the fattening period were also determined by slaughtering 15 weaning rabbits at 28 days, and the 41 selected animals at 63 days of age. Animals from the R line showed higher feed intake than those from maternal lines, as well as lower feed conversion ratio, even below that expected from their growth rate. Apparent faecal digestibility of GE and apparent ileal digestibility of DM, CP and cystine of the diet were higher in LP than in H rabbits (P < 0.05), showing intermediate values in R rabbits. However, apparent ileal digestibility of glutamic acid and glycine was significantly higher in R than in H rabbits (P < 0.05), showing intermediate values in LP rabbits. As expected, both daily protein and energy retained in the empty body increased as growth increased. However, R growing rabbits seem to have lower protein retained and higher energy retained in the empty body than that expected from their growth. In fact, protein to energy retained ratio was clearly lower for R growing rabbits. These results seem to show the possible existence of some limiting amino acid when current moderate protein diets are used in growing rabbits with high growth rates, recommending a review of the amino acid requirements for the growing rabbits from paternal lines.This study was supported by the Interministerial Commission for Science and Technology (CICYT) from the Spanish Government (AGL2017-85162-C2-1-R). The grant for Pablo Marin from the Ministry of Education, Culture and Sports (FPU-2014-01203) is also gratefully acknowledged.Marín-García, P.; Ródenas Martínez, L.; Martinez-Paredes, E.; Cambra López, M.; Blas Ferrer, E.; Pascual Amorós, JJ. (2020). A moderate protein diet does not cover the requirements of growing rabbits with high growth rate. Animal Feed Science and Technology. 264:1-11. https://doi.org/10.1016/j.anifeedsci.2020.114495S111264Alagón, G., Arce, O. N., Martínez-Paredes, E., Ródenas, L., Moya, V. J., Blas, E., … Pascual, J. J. (2016). Nutritive value of distillers dried grains with solubles from barley, corn and wheat for growing rabbits. Animal Feed Science and Technology, 222, 217-226. doi:10.1016/j.anifeedsci.2016.10.024Batey, I. L. (1982). Starch Analysis Using Thermostable alpha-Amylases. Starch - Stärke, 34(4), 125-128. doi:10.1002/star.19820340407Birolo, M., Trocino, A., Zuffellato, A., & Xiccato, G. (2016). Effect of feed restriction programs and slaughter age on digestive efficiency, growth performance and body composition of growing rabbits. Animal Feed Science and Technology, 222, 194-203. doi:10.1016/j.anifeedsci.2016.10.014Cartuche, L., Pascual, M., Gómez, E. A., & Blasco, A. (2014). Economic weights in rabbit meat production. World Rabbit Science, 22(3), 165. doi:10.4995/wrs.2014.1747Cifre, J., Baselga, M., García-Ximénez, F., & Vicente, J. S. (1998). Performance of a hyperprolific rabbit line I. Litter size traits. Journal of Animal Breeding and Genetics, 115(1-6), 131-138. doi:10.1111/j.1439-0388.1998.tb00336.xCosta, C., Baselga, M., Lobera, J., Cervera, C., & Pascual, J. J. (2004). Evaluating response to selection and nutritional needs in a three-way cross of rabbits. Journal of Animal Breeding and Genetics, 121(3), 186-196. doi:10.1111/j.1439-0388.2004.00450.xEstany, J., Camacho, J., Baselga, M., & Blasco, A. (1992). Selection response of growth rate in rabbits for meat production. Genetics Selection Evolution, 24(6), 527. doi:10.1186/1297-9686-24-6-527García-Quirós, A., Arnau-Bonachera, A., Penadés, M., Cervera, C., Martínez-Paredes, E., Ródenas, L., … Pascual, J. J. (2014). A robust rabbit line increases leucocyte counts at weaning and reduces mortality by digestive disorder during fattening. Veterinary Immunology and Immunopathology, 161(3-4), 123-131. doi:10.1016/j.vetimm.2014.07.005Gidenne, T., & Perez, J.-M. (2000). Replacement of digestible fibre by starch in the diet of the growing rabbit. I. Effects on digestion, rate of passage and retention of nutrients. Annales de Zootechnie, 49(4), 357-368. doi:10.1051/animres:2000127Lv, J.-M., Chen, M., Qian, L.-C., Ying, H.-Z., & Liu, J.-X. (2009). Requirement of crude protein for maintenance in a new strain of laboratory rabbit. Animal Feed Science and Technology, 151(3-4), 261-267. doi:10.1016/j.anifeedsci.2009.01.001Mínguez, C., Sanchez, J. P., EL Nagar, A. G., Ragab, M., & Baselga, M. (2015). Growth traits of four maternal lines of rabbits founded on different criteria: comparisons at foundation and at last periods after selection. Journal of Animal Breeding and Genetics, 133(4), 303-315. doi:10.1111/jbg.12197Partridge, G. G., Garthwaite, P. H., & Findlay, M. (1989). Protein and energy retention by growing rabbits offered diets with increasing proportions of fibre. The Journal of Agricultural Science, 112(2), 171-178. doi:10.1017/s0021859600085063Pascual, M., & Pla, M. (2007). Changes in carcass composition and meat quality when selecting rabbits for growth rate. Meat Science, 77(4), 474-481. doi:10.1016/j.meatsci.2007.04.009Pascual, M., Pla, M., & Blasco, A. (2008). Effect of selection for growth rate on relative growth in rabbits1,2. Journal of Animal Science, 86(12), 3409-3417. doi:10.2527/jas.2008-0976Quevedo, F., Cervera, C., Blas, E., Baselga, M., & Pascual, J. J. (2006). Long-term effect of selection for litter size and feeding programme on the performance of reproductive rabbit does 2. Lactation and growing period. Animal Science, 82(5), 751-762. doi:10.1079/asc200688Sánchez, J. P., Theilgaard, P., Mínguez, C., & Baselga, M. (2008). Constitution and evaluation of a long-lived productive rabbit line1. Journal of Animal Science, 86(3), 515-525. doi:10.2527/jas.2007-0217Savietto, D., Blas, E., Cervera, C., Baselga, M., Friggens, N. C., Larsen, T., & Pascual, J. J. (2012). Digestive efficiency in rabbit does according to environment and genetic type. World Rabbit Science, 20(3). doi:10.4995/wrs.2012.1152Savietto, D., Cervera, C., Ródenas, L., Martínez-Paredes, E., Baselga, M., García-Diego, F. J., … Pascual, J. J. (2014). Different resource allocation strategies result from selection for litter size at weaning in rabbit does. Animal, 8(4), 618-628. doi:10.1017/s1751731113002437Trocino, A., García Alonso, J., Carabaño, R., & Xiccato, G. (2013). A meta-analysis on the role of soluble fibre in diets for growing rabbits. World Rabbit Science, 21(1). doi:10.4995/wrs.2013.1285Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74(10), 3583-3597. doi:10.3168/jds.s0022-0302(91)78551-

    Effects of Trecadrine, a beta3-adrenergic agonist, on leptin secretion, glucose and lipid metabolism in isolated rat adipocytes

    Get PDF
    Objective: Leptin, a hormone produced in adipocytes, is a key signal in the regulation of food intake and energy expenditure. beta-Adrenergic agonists have been shown to inhibit leptin gene expression and leptin secretion. The mechanisms underlying the inhibitory effects of beta-adrenergic agonists have not been established. In this study, we examined the effects of TrecadrineÒ, a novel beta3-adrenergic agonist, on basal and insulin-stimulated leptin secretion in isolated rat adipocytes. Because insulin-stimulated glucose metabolism is an important regulator of leptin expression and secretion by the adipocytes, the effects of Trecadrine on indices of adipocyte metabolism were also examined. Measurements: Isolated adipocytes were incubated with Trecadrine (10-8-10-4 M) in the absence or presence of insulin (1.6 nM). Leptin secretion, glucose utilization, lactate production, glucose incorporation into CO2 and triglyceride, as well as lipolysis (glycerol release) were determined. Results: Trecadrine induced a concentration-dependent inhibition of basal leptin secretion. Trecadrine also decreased insulin-stimulated leptin secretion; however, the effect was not as pronounced as in the absence of insulin. Treatment of adipocytes with Trecadrine increased basal glucose utilization and produced a further increase in insulin-stimulated glucose utilization. Basal lactate production was also increased by Trecadrine; however, the proportion (percentage) of glucose carbon released as lactate was unaffected. In the presence of insulin, absolute lactate production was unaffected by Trecadrine at 96 h. However, the percentage of glucose carbon released as lactate was significantly decreased by insulin treatment, and was further decreased by the co-treatment with Trecadrine. Trecadrine induced a dose-dependent increase of the absolute amount of glucose incorporated into triglyceride. However, the percentage of glucose utilized that was incorporated into triglyceride was unaffected by Trecadrine. Trecadrine did not modify the proportion of glucose utilized that was oxidized to CO2. Trecadrine increased glycerol release after 96 h of treatment. Glycerol release was negatively correlated with leptin secretion. Conclusions: These results suggest that alterations of glucose metabolism are not directly involved in the effects of beta3-adrenergic agonists to inhibit leptin expression and secretion. The inverse relationship between leptin secretion and the increase of glycerol levels, which is an index of the activation of cAMP-dependent protein kinases, suggests that activation of the cAMP signaling pathway mediates the inhibitory effects of Trecadrine on leptin gene expression and secretion

    Plasmatic Urea Nitrogen in Growing Rabbits with Different Combinations of Dietary Levels of Lysine, Sulphur Amino Acids and Threonine

    Full text link
    [EN] Formulating diets to maximize nutrient harnessing has positive effects on performance and environment. In the case of growing rabbits, clues exist indicating that animals with high growth rate when consuming current diets show lower protein retention than expected, and it could be related to amino acid supply. The aim of this work is to find the amino acid combination (27 experimental diets: 3 levels of the 3 main limiting amino acids: lysine, sulphur amino acids, and threonine) that would minimize the nitrogen excretion in the bloodstream, a marker of the efficiency in the amino acid use This combination is a good candidate to be tested in order to improve performance and reduce pollution. A total of 27 experimental diets were formulated starting from the same basal mixture, with a moderate content of crude protein and digestible energy (155 g and 9.86 MJ/kg of digestible matter (DM), respectively, both estimated). The contents of lysine, sulphur amino acids and threonine were variable. The first one, close to the current recommendations (Medium, M; 8.1, 5.8 and 6.9 g/kg DM for lysine, sulphur amino acids and threonine, respectively), and two other levels were on average 15% higher (High, H; 9.4, 6.6 and 7.8 g/kg DM for lysine, sulphur amino acids and threonine, respectively) or lower (Low, L; 6.7, 4.9 and 5.7 g/kg DM for lysine, sulphur amino acids and threonine, respectively). Diets were named with three letters, indicating lysine, sulphur amino acids and threonine levels, respectively. In total, 918 weaned rabbits (28 days old) were used (34 per diet). At weaning, animals were fed ad libitum with a commercial diet until day 46, day 47 each collective cage was randomly switched to one experimental diet. At day 48, blood samples were collected at 08:00h then the animals were subjected to 10 h of fasting and a second blood sample was extracted at 21.00h. At 08:00h, Pasmatic urea nitrogen (PUN) was higher with the L level of lysine (p< 0.001), unaffected by the level of sulphur amino acids and increased with the level of threonine (p< 0.001). At 21:00h, minimum PUN was observed with the MHL diet (14.72 +/- 0.661 mg/dL). Taken into account the usual recommendations (established for a diet containing 11.3 MJ DE/kg DM, and then being 0.72, 0.51 and 0.61 g/MJ DE for lysine, sulphur amino acids and threonine, respectively), these results suggest that a diet containing more lysine and sulphur amino acids per energy unit (around 0.82 and 0.67 g/MJ DE) could better fit the growing rabbit requirements, although studies on the effects of such a diet on performance and protein retention are necessary.This study was supported by the Interministerial Commission for Science and Technology (CICYT) from the Spanish Government (AGL2017-85162-C2-1-R). The grant for Pablo Marin from the Ministry of Education, Culture and Sports (FPU-2014-01203) is also gratefully acknowledged.Marín-García, P.; López Luján, MDC.; Ródenas Martínez, L.; Martinez-Paredes, E.; Blas Ferrer, E.; Pascual Amorós, JJ. (2020). Plasmatic Urea Nitrogen in Growing Rabbits with Different Combinations of Dietary Levels of Lysine, Sulphur Amino Acids and Threonine. Animals. 10(6):1-8. https://doi.org/10.3390/ani10060946S18106Quevedo, F., Cervera, C., Blas, E., Baselga, M., & Pascual, J. J. (2006). Long-term effect of selection for litter size and feeding programme on the performance of reproductive rabbit does 2. Lactation and growing period. Animal Science, 82(5), 751-762. doi:10.1079/asc200688Pascual, M., Pla, M., & Blasco, A. (2008). Effect of selection for growth rate on relative growth in rabbits1,2. Journal of Animal Science, 86(12), 3409-3417. doi:10.2527/jas.2008-0976Pascual, M., & Pla, M. (2007). Changes in carcass composition and meat quality when selecting rabbits for growth rate. Meat Science, 77(4), 474-481. doi:10.1016/j.meatsci.2007.04.009Marín-García, P. J., Ródenas, L., Martínez-Paredes, E., Cambra-López, M., Blas, E., & Pascual, J. J. (2020). A moderate protein diet does not cover the requirements of growing rabbits with high growth rate. Animal Feed Science and Technology, 264, 114495. doi:10.1016/j.anifeedsci.2020.114495Carabaño R., Villamide M.J., García J., Nicodemus N., Llorente A., Chamorro S., & Menoyo D. (2010). New concepts and objectives for protein-amino acid nutrition in rabbits: a review. World Rabbit Science, 17(1). doi:10.4995/wrs.2009.664Taboada, E., Mendez, J., & de Blas, J. (1996). The response of highly productive rabbits to dietary sulphur amino acid content for reproduction and growth. Reproduction Nutrition Development, 36(2), 191-203. doi:10.1051/rnd:19960204Taboada, E., Mendez, J., Mateos, G. ., & De Blas, J. . (1994). The response of highly productive rabbits to dietary lysine content. Livestock Production Science, 40(3), 329-337. doi:10.1016/0301-6226(94)90099-xDe Blas, J. C., Taboada, E., Nicodemus, N., Campos, R., Piquer, J., & Méndez, J. (1998). Performance response of lactating and growing rabbits to dietary threonine content. Animal Feed Science and Technology, 70(1-2), 151-160. doi:10.1016/s0377-8401(97)00063-1Roth-Maier, D. A., Ott, H., Roth, F. X., & Paulicks, B. R. (2004). Effects of the level of dietary valine supply on amino acids and urea concentration in milk and blood plasma of lactating sows. Journal of Animal Physiology and Animal Nutrition, 88(1-2), 39-45. doi:10.1046/j.0931-2439.2003.00458.xDonsbough, A. L., Powell, S., Waguespack, A., Bidner, T. D., & Southern, L. L. (2010). Uric acid, urea, and ammonia concentrations in serum and uric acid concentration in excreta as indicators of amino acid utilization in diets for broilers. Poultry Science, 89(2), 287-294. doi:10.3382/ps.2009-00401Marín-García, P. J., López-Luján, M. del C., Ródenas, L., Martínez-Paredes, E. M., Blas, E., & Pascual, J. J. (2020). Plasma urea nitrogen as an indicator of amino acid imbalance in rabbit diets. World Rabbit Science, 28(2), 63. doi:10.4995/wrs.2020.12781Van Milgen, J., & Dourmad, J.-Y. (2015). Concept and application of ideal protein for pigs. Journal of Animal Science and Biotechnology, 6(1). doi:10.1186/s40104-015-0016-1Fernández-Carmona J., Blas E., Pascual J.J., Maertens L., Gidenne T., Xiccato G., & García. (2010). Recommendations and guidelines for applied nutrition experiments in rabbits. World Rabbit Science, 13(4). doi:10.4995/wrs.2005.516Real Decreto 53/2013, Por el Que se Establecen las Normas Básicas Aplicables Para la Protección de los Animales Utilizados en Experimentación y Otros Fines Científicos, Incluyendo la Docencia. BOE 34https://www.boe.es/diario_boe/txt.php?id=BOE-A-2013-1337Cifre, J., Baselga, M., García-Ximénez, F., & Vicente, J. S. (1998). Performance of a hyperprolific rabbit line I. Litter size traits. Journal of Animal Breeding and Genetics, 115(1-6), 131-138. doi:10.1111/j.1439-0388.1998.tb00336.xEstany, J., Camacho, J., Baselga, M., & Blasco, A. (1992). Selection response of growth rate in rabbits for meat production. Genetics Selection Evolution, 24(6), 527. doi:10.1186/1297-9686-24-6-527Bosch, L., Alegría, A., & Farré, R. (2006). Application of the 6-aminoquinolyl-N-hydroxysccinimidyl carbamate (AQC) reagent to the RP-HPLC determination of amino acids in infant foods. Journal of Chromatography B, 831(1-2), 176-183. doi:10.1016/j.jchromb.2005.12.002Eggum, B. O. (1970). Blood urea measurement as a technique for assessing protein quality. British Journal of Nutrition, 24(4), 983-988. doi:10.1079/bjn19700101Nicodemus, N., Mateos, J., Blas, J. C. de, Carabaño, R., & Fraga, M. J. (1999). Effect of diet on amino acid composition of soft faeces and the contribution of soft faeces to total amino acid intake, through caecotrophy in lactating doe rabbits. Animal Science, 69(1), 167-170. doi:10.1017/s1357729800051201García, A. I., de Bias, J. C., & Carabaño, R. (2004). Effect of type of diet (casein-based or protein-free) and caecotrophy on ileal endogenous nitrogen and amino acid flow in rabbits. Animal Science, 79(2), 231-240. doi:10.1017/s1357729800090093Monteiro-Motta, A. C., Scapinello, C., Oliveira, A. F. G., Figueira, J. L., Catelan, F., Sato, J., & Stanquevis, C. E. (2013). Levels of lysine and methionine+cystine for growing New Zealand White rabbits. Revista Brasileira de Zootecnia, 42(12), 862-868. doi:10.1590/s1516-3598201300120000
    corecore