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isolated rat adipocytes
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OBJECTIVE: Leptin, a hormone produced in adipocytes, is a key signal in the regulation of food intake and energy expenditure.
b-Adrenergic agonists have been shown to inhibit leptin gene expression and leptin secretion. The mechanisms underlying the
inhibitory effects of b-adrenergic agonists have not been established. In this study, we examined the effects of Trecadrine1, a
novel b3-adrenergic agonist, on basal and insulin-stimulated leptin secretion in isolated rat adipocytes. Because insulin-
stimulated glucose metabolism is an important regulator of leptin expression and secretion by the adipocytes, the effects of
Trecadrine on indices of adipocyte metabolism were also examined.
MEASUREMENTS: Isolated adipocytes were incubated with Trecadrine (1078 – 1074 M) in the absence or presence of insulin
(1.6 nM). Leptin secretion, glucose utilization, lactate production, glucose incorporation into CO2 and triglyceride, as well as
lipolysis (glycerol release) were determined.
RESULTS: Trecadrine induced a concentration-dependent inhibition of basal leptin secretion. Trecadrine also decreased insulin-
stimulated leptin secretion; however, the effect was not as pronounced as in the absence of insulin. Treatment of adipocytes with
Trecadrine increased basal glucose utilization and produced a further increase in insulin-stimulated glucose utilization. Basal
lactate production was also increased by Trecadrine; however, the proportion (percentage) of glucose carbon released as lactate
was unaffected. In the presence of insulin, absolute lactate production was unaffected by Trecadrine at 96 h. However, the
percentage of glucose carbon released as lactate was significantly decreased by insulin treatment, and was further decreased by
the co-treatment with Trecadrine. Trecadrine induced a dose-dependent increase of the absolute amount of glucose
incorporated into triglyceride. However, the percentage of glucose utilized that was incorporated into triglyceride was
unaffected by Trecadrine. Trecadrine did not modify the proportion of glucose utilized that was oxidized to CO2. Trecadrine
increased glycerol release after 96 h of treatment. Glycerol release was negatively correlated with leptin secretion.
CONCLUSIONS: These results suggest that alterations of glucose metabolism are not directly involved in the effects of b3-
adrenergic agonists to inhibit leptin expression and secretion. The inverse relationship between leptin secretion and the increase
of glycerol levels, which is an index of the activation of cAMP-dependent protein kinases, suggests that activation of the cAMP
signaling pathway mediates the inhibitory effects of Trecadrine on leptin gene expression and secretion.
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Introduction
Molecules with affinity for b3-adrenergic receptors have been

developed as potential drugs for the treatment of obesity and

diabetes.1,2 Trecadrine1 a novel b-adrenergic agonist with a

marked selectivity for b3-adrenoceptors,3 has shown anti-

diabetic properties in an alloxan-induced rat model of dia-

betes by decreasing hepatic glucose output and improving

muscle glucose uptake.4,5 Trecadrine has also been shown to

have anti-obesity properties in a diet-induced obesity model

(cafeteria-fed animals), by decreasing fat content and the

weight of white adipose tissue (WAT) depots while increasing

gastrocnemius muscle UCP2 mRNA, brown adipose tissue

*Correspondence: PJ Harvel, Department of Nutrition, University of

California, Davis, One Shields Ave, Davis, CA 95616, USA.

E-mail: pjhavel@ucdavis.edu

Received 6 August 2001; revised 3 January 2002;

accepted 8 January 2002

International Journal of Obesity (2002) 26, 912–919
� 2002 Nature Publishing Group All rights reserved 0307–0565/02 $25.00

www.nature.com/ijo

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dadun, University of Navarra

https://core.ac.uk/display/83569327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


(BAT) UCP1 mRNA levels and WAT lipolysis and oxygen

consumption.6,7

In vivo, Trecadrine treatment, like other b3-adrenergic

agonists, causes a decrease in both leptin expression in

WAT and plasma leptin levels.7 – 10 The mechanisms under-

lying the inhibition of leptin expression and secretion by b3-

adrenergic stimulation remain unclear. Previous experiments

from our laboratory and others have demonstrated that

insulin-mediated glucose metabolism has an important role

regulating leptin expression and secretion,11 – 15 Free fatty

acids have been reported to inhibit leptin expression and

secretion in adipocytes.16,17 It is well known that the sympa-

thetic nervous system regulates adipocyte glucose and fat

metabolism through b-adrenergic receptors.18

Therefore, the aim of the present study was to determine

the direct effects of Trecadine on leptin expression and

secretion in isolated rat adipocytes and whether its effects

were related to alterations in adipocyte glucose and=or fat

metabolism. For this purpose, the effects of Trecadrine on

glucose utilization, lactate production, and percentage of

glucose converted to lactate, incorporated into lipid, or

oxidized to CO2 were assessed. The lipolytic effect of Treca-

drine and its relationship with leptin secretion were also

examined by measuring glycerol release.

Methods
Materials

Media (Dulbecco’s modified Eagle’s medium, DMEM), fetal

bovine serum, minimal essential medium amino acids, peni-

cillin=streptomycin and nystatin were purchased from Life

Technologies (Grand Island, NY, USA). Bovine serum albu-

min fraction V, 4-(2-hydroxyethyl)-1-piperazineethansulfo-

nic acid (HEPES) and insulin were purchased from Sigma

Chemical Co. (St Louis, MO, USA). Collagen (Vitrogen 100)

was purchased from Cohesion Technologies (Palo Alto, CA,

USA). 14C-glucose was obtained from NEN (Beverly, MA,

USA). Trecadrine was a generous gift from Wassermann-

Chiesi (Barcelona=Milano).

Animals

Male Sprague – Dawley rats (3 – 6 months of age) were

obtained from Charles River (Wilmington, MA, USA). Ani-

mals were housed in hanging wire cages in temperature-

controlled rooms (22�C) with a 12 h light – dark cycle and fed

Purina chow diet (Ralston-Purina., St Louis, MO, USA) and

given deionized water ad libitum.

Adipocyte isolation and culture

Adipocytes were isolated from epididymal fat pads of male

Sprague – Dawley rats. The fat pads were minced into pieces

in Krebs-Ringer HEPES buffer (pH 7.4; containing 5 mM

D-glucose, 2% BSA, 135 mM NaC1, 2.2 mM CaCl2 � 2H2O,

1.25 mM MgSO4 �7H2O, 0.45 mM KH2PO4, 2.17 mM

Na2HPO4 and 10 mM HEPES). Adipose tissue fragments

were digested in the same buffer with type I collagenase

(1.25 mg=ml per 0.5 g tissue; Worthington, Lakewood, NJ,

USA) at 37�C with gentle shaking at 60 cycles=min for

30 min. The resulting cell suspension was diluted in HEPES-

phosphate buffer and the isolated adipocytes were then

separated from the undigested tissue by filtration through a

400 mm nylon mesh and washed three times. Isolated adipo-

cytes were then resuspended in DMEM supplemented with

1% FBS and incubated for 30 min at 37�C.

The isolated adipocytes (150 ml of 2:1 ratio of packed cells

to medium) were then plated on 500 ml of a collagen matrix

(Vitrogen 100, Cohesion Technologies, Palo Alto, CA, USA)

in six-well culture plates. After a 45 min incubation at 37�C,

the culture media containing the different treatments were

added and the cells were maintained in an incubator at 37�C

in 6% CO2 for up to 96 h. Aliquots (300 ml) of the media were

collected at 24, 48, 72 and 96 h, and replaced with fresh

medium containing the appropriate concentration of insulin

and=or Trecadrine.

Assays

Leptin concentrations in the medium were determined by a

radioimmunoassay for rat leptin (Linco Research, St Charles,

MO, USA), as previously described.19 Glucose and lactate

were measured with a YSI glucose analyzer (Model 2300,

Yellow Springs Instruments, Yellow Springs, OH, USA).

Analysis of mRNA

Leptin mRNA level was determined by Northern blotting.

The leptin cDNA probe was a 388 bp fragment of mouse

leptin cDNA, which was kindly provided by Dr Charles

Mobbs (Mount Sinai School of Medicine, New York, USA).

The 18S ribosomal probe was obtained from Ambion

(Ambion, Austin, TX, USA).

RNA was extracted according to the Gibco Life Technol-

ogies procedure using Trizol (Life Technologies Inc., Grand

Island, NY, USA). The UV absorbance and integrity gels were

used to estimate RNA. Leptin and 18S cDNA probes were

labeled by random priming (Rediprime kit, Amersham, Buck-

inghamshire, UK) in the presence of 32P dCTP (3000 Ci=

mmol, Amersham). Unincorporated nucleotides were

removed using NucTrap probe purification columns (Strata-

gene, La Jolla, CA, USA). For each tissue sample, 5 – 7mg of

total RNA were fractionated by electrophoresis on a denatur-

ing 1% agarose gel containing 2.2 M formaldehyde and 1�

MOPS running buffer. One microliter of a 50 mg=ml ethidium

bromide (Gibco BRL, Gaithersburg, MD, USA) stock solution

was added in order to check RNA integrity and even loading.

After electrophoresis, RNA was transferred to nylon mem-

brane (Duralon-UV, Stratagene, La Jolla, CA, USA) by over-

night capillary transfer and UV cross-linked (Stratalinker

1800, Stratagene, La Jolla, CA, USA). Blots were then hybri-

dized for 1 h at 68�C in presence of the labeled cDNA probe
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(2�106 cpm=ml Express Hyb solution, Clontech, Palo Alto,

CA, USA). After washing at high stringency, blots were

exposed to X-ray films with an intensifying screen for 1

day at 780�C. To allow loading of equal mass of RNA in

each well, after analysis of leptin mRNA using a single-

stranded cDNA probe followed by quantification of bands

from film, the blots were re-analyzed using a probe comple-

mentary to mouse 18S ribosomal RNA. Leptin mRNA was

then normalized with respect to the 18S ribosomal signal.

Glucose incorporation into lipid

Glucose incorporation into lipid was measured after 96 h of

culture by counting the 14C radio-labeled glucose incorpo-

rated into the adipocytes.20 Throughout the culture, the

adipocytes were incubated in media containing 0.01 mCi=ml

of 14C glucose (NEN, Beverly, MA, USA). After 96 h the media

was removed, along with any extracellular triglyceride in the

wells, and 4 ml of methanol were added to each well. The

adipocytes anchored into the collagen were then transferred

into a 50 ml glass tube with screw cap. The well was washed

again using an additional 1 ml of methanol which was also

transferred to the tube. Ten milliliters of chloroform were

added to each tube in order to extract the triglyceride as

described by Folch.21 Twenty-four hours later, the tube was

filled with de-ionized water to separate the methanol from

the chloroform containing the triglyceride. The water –

methanol layer was aspirated and remaining moisture was

absorbed by the adding 4 g sodium sulfate. One milliliter of

the chloroform – triglyceride was pipetted into a scintillation

vial and counted for radioactivity (dpms). Five milliliters of

the chloroform – lipid was pipetted into pre-weighed alumi-

num pans. The chloroform was allowed to evaporate and

the pan was weighed again to determine the retained

triglyceride (mg).

Glucose oxidation

Oxidation was measured using a modification of the method

of Rodbell22 and a modification of the culture system

described by Bottcher and Furst.23 Briefly, isolated adipocytes

were placed in collagen in sterile 20 ml scintillation vials.

Two milliliters of treatment media containing 0.03 mCi=ml of

[U-14C]-glucose were added to the vials. The vials were

capped with rubber stoppers fitted with a hanging center

well in the presence of 6% CO2 gas. Each well contained a

2�8 cm strip of Whatman no. 1 paper. Vials were incubated

at 37�C for 48 h. After 48 h a media sample was removed

from each vial using a 4 inch, 23 gauge needle. Using

another syringe and 23 gauge needle, 200 ml of sodium

benzethonium were placed onto the paper strip and hanging

well to capture CO2. Concentrated sulfuric acid was added to

the vials in order to lyse cells and liberate all CO2 from the

collagen matrix. After 24 h, the hanging well and paper were

transferred to another vial containing scintillation fluid and

counted.

Lipolysis

Glycerol released into the media at 96 h was assayed to

evaluate lipolysis. Glycerol was determined using Sigma

Diagnostics Triglyceride (GPO-Trinder) reagent following

the procedure indicated by the manufacturer (Sigma Diag-

nostics, Inc, St Louis, MO, USA).

Data analysis

Glucose utilization was assessed by measuring the concen-

tration of glucose in the media in each well before and at 24,

48, 72 and 96 h with corrections for the amount of glucose

that was removed and added during media sampling and

replacement. Lactate production was calculated as the

increase of media lactate at 24, 48, 72 and 96 h with correc-

tions for the amount of lactate removed and added with

media replacement. The amount of carbon released as lactate

per amount of carbon taken up as glucose over 96 h was

calculated as D[lactate]=D[glucose], where D is the change

and expressed as a percentage. The amount of glucose

incorporated into CO2 was calculated as (dpms collected

on Whatman 1 strip) (total glucose)=total dpms and

expressed as a percentage of total glucose utilized. The

amount of glucose incorporated into lipid was calculated as

((dpms extracted in 1 ml chloroform)(total glucose)=total

dpms)�10 ml chloroform. This value was normalized over

the amount of lipid recovered from the well and expressed as

a percentage of total glucose utilized. The experimental

results from each adipocyte suspension prepared from a

single animal were analyzed in relation to a control well

from the same suspension. The means were compared by

ANOVA followed by a Bonferroni’s post-hoc test (GraphPad

Prism, GraphPad Software Inc, San Diego, CA, USA).

Results
Effect of Trecadrine on leptin expression and secretion

Trecadrine (1078 – 1074 M) induced a concentration-depen-

dent inhibition of basal leptin secretion from the first 24 h of

treatment (Figure 1A). Over 96 h of treatment, the inhibitory

effect of Trecadrine on leptin secretion was significant

(P<0.001) at concentrations of 1075 and 1074 M

(46.5�7.2 and 39.6�8.5% of control). Insulin at 1.6 nM

induced a significant increase on leptin secretion over the

96 h (220�18.2% of control, P<0.001). Co-treatment with

Trecadrine in the presence of insulin decreased insulin-sti-

mulated leptin secretion (Figure 1B). However, the effect of

Trecadrine to inhibit leptin secretion was not as potent as in

the absence of insulin (80.2�5.1 and 84.1�6.1% for 1075

and 1074 M respectively).

The pattern of Trecadrine’s effects on leptin expression at

48 h of treatment mimics those observed for leptin secretion

(Figure 2). Trecadrine induced a decrease in basal leptin

mRNA levels (40.8�5.2 and 35.1�7.8% of control for

1076 and 1074 M). As expected, insulin had a potent effect

to increase leptin mRNA levels (251.3�9.2% of control) and
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Trecadrine modestly reduced the effect of insulin to increase

leptin mRNA levels (78.5�0.4 and 77.3�0.3% of insulin for

1076 and 1074 M Trecadrine).

Effect of Trecadrine on glucose utilization

Trecadrine induced a concentration-dependent increase in

basal glucose utilization over 96 h (Figure 3A), which was

significant at 1076, 1075 and 1074 M (123�9.9, P<0.05;

139.1�16.3 and 172.9�24.6%, P<0.01 of control, respec-

tively). This increase in basal glucose uptake was observed

from the first 24 h of treatment (data not shown). As

expected, insulin (1.6 nM) induced a significant increase in

glucose uptake (170.5�24.0% of control, P<0.01). When

adipocytes were co-treated with Trecadrine in the presence of

insulin, a concentration-dependent increase in glucose

uptake was also observed. This stimulatory effect of Treca-

drine on insulin-stimulated glucose uptake was, however,

less potent (125.8�7.0% for the 1074 M concentration;

P<0.05) than the effects of Trecadrine on basal glucose

uptake (Figure 3B).

Effect of Trecadrine on lactate production

As shown in Table 1, Trecadrine increased absolute lactate

production at 1075 and 1074 M (127.6�9.0 and 144.6�

10.3%). However, the proportion of carbon released as lac-

tate per amount of carbon taken up as glucose over 96 h was

unaffected by Trecadrine treatment (Table 1). Lactate produc-

tion at 96 h was similar in adipocytes treated with insulin

alone and those co-treated with Trecadrine (Table 2). As we

have previously reported, the percentage of glucose carbon

released as lactate was significantly decreased by insulin

treatment (41.7�7.8 vs 25.5�5.8, P<0.001), and co-treat-

ment with 1074 M Trecadrine decreased this percentage

(25.5�5.8 vs 20.0�4.6, P<0.05; Table 2).

Effect of Trecadrine on glucose incorporation into

triglyceride

The amount of glucose incorporated into triglyceride was

increased by Trecadrine in a dose-dependent manner

(162.6�29.3 and 168.8�21.5% of control for 1075 and

1074 M, respectively). However, the proportion (percentage)

of glucose incorporated into triglyceride of the total 96 h

glucose utilization was not significantly modified by Treca-

drine treatment at any concentration (Table 1).

As expected, insulin caused a significant increase in glu-

cose incorporation into triglyceride (254.7�98.8%); how-

ever insulin did not significantly increase the percentage of

glucose incorporation into triglyceride. Co-treatment with

Trecadrine at concentrations 1075 and 1074 M further

increased the amount of glucose incorporated into triglycer-

ide (125.5�9.7 and 139.8�11.4% of insulin-treated adipo-

cytes). However, the percentage of glucose incorporated into

triglyceride of the total 96 h glucose utilization was not

significantly modified in cells co-treated with insulin and

Trecadrine in comparison to those treated with insulin alone

(Table 2).

Effect of Trecadrine on glucose oxidation

Trecadrine (1076 and 1074 M) did not modify the percentage

of glucose oxidized to CO2 (Table 1). Insulin, however,

caused a significant increase (P<0.01) in the oxidation of

glucose into CO2, which was not affected by the co-treat-

ment with Trecadrine (Table 2).

Effect of Trecadrine on lipolysis

The effects of Trecadrine on lypolysis were evaluated by

determining the amount of glycerol released into the

media over 96 h of culture. Trecadrine induced a concentra-

tion-dependent increase (Figure 4) in glycerol release, which

was significant at concentrations of 1076, 1075 and 1074 M

Figure 1 Effects of Trecadrine on basal (A) and insulin-stimulated (B)
leptin secretion by isolated rat adipocytes over 96 h in culture. Results
(mean� s.e.) are representative of six independent experiments.
*P<0.05; **P<0.001; and ***P<0.001 vs corresponding control.
aP<0.05 vs insulin-treated cells.
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(123.5�9.3, 136.9�7.1 and 162.6�9.8% of control,

P<0.05, P<0.001 and P<0.001, respectively). The increase

in glycerol levels was negatively correlated (r¼ 70.503,

P<0.0001) to the inhibition of leptin secretion in Trecadrine

treated adipocytes.

Discussion
b3-Adrenergic agonists have been reported to inhibit leptin

expression and secretion in rodents primary adipocytes in

culture.24,25 An inhibition of leptin secretion was also

observed after administration of Trecadrine or other b3-

adrenergic agonist drugs to rats and mice.7 – 10 The effect of

insulin to stimulate leptin expression and secretion by pri-

mary rat adipocytes is well established.11,24,26 – 28 In the pre-

sent study, an inhibitory effect of Trecadrine was also

observed on insulin-stimulated leptin secretion. However,

the inhibitory effect was less potent than in the absence of

insulin, suggesting that insulin was able to partially reverse

the inhibitory effects of Trecadrine on leptin expression and

secretion. Gettys et al24 reported a potent inhibition of

insulin-stimulated leptin secretion from isolated adipocytes

using the b3-AR selective agonist CL316,243. This large

inhibitory effect may be due to the differences in the treat-

ment conditions (eg short-term vs longer culture periods or

studying adipocytes in suspension vs adipocytes anchored to

a matrix) or to the potency of the b3-agonist employed. A

recent study using cultured human adipose tissue reported

that the inhibition of leptin secretion induced by isoproter-

enol, a nonselective b-adrenergic agonist, was reversed in the

presence of insulin.29

Previous data from our laboratory indicate that glucose

metabolism has an important role in the regulation of leptin

expression and secretion in isolated cultured rat adipocytes

and the transcriptional activity of the leptin promoter in

3T3-Ll cells.11,30,31 Inhibition of glucose uptake with 2-

deoxy-D-glucose, phloretin or cytochalasin B, or inhibition

of glycolysis, with NaF or iodoacetate, decreases insulin-

stimulated leptin gene expression and leptin secretion.11

Several studies have previously reported that b3-adrenergic

agonists can increase glucose uptake by adipose tissue and

skeletal muscle in vivo and in vitro.32 – 35

Trecadrine has been shown to alter hexose uptake in

several tissues. Administration of 1 mg=kg of Trecadrine for

4 days caused an increase of 2 deoxy-D-glucose uptake in

Figure 2 Effects of Trecadrine on basal and insulin-stimulated leptin mRNA expression, as assessed by Northern blots. The expression level of 18S
ribosomal RNA was determined and used as an internal control to correct for minor variation in total RNA amount. Densitometric scanning was used to
determine the relative amount of leptin mRNA and 18S RNA. Values are mean� s.e. from two experiments.
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extensor digitorium longus and in gastronemius muscles,

while no changes were found in soleus muscle and WAT.5 It

is unclear, however, if the ability of Trecadrine and other b3-

adrenergic agonists to promote glucose uptake is mediated

by increasing the non-insulin dependent glucose utilization

or by promoting the recruitment of insulin-regulated glucose

transporters.32,33 In the present study, Trecadrine induced a

concentration-dependent stimulation of both basal and

insulin-stimulated glucose uptake by isolated adipocytes,

which is consistent with the previously reported anti-dia-

betic properties of Trecadrine.4,5

Previously published studies from our laboratory suggest

that the metabolism of glucose beyond pyruvate, and not

glucose utilization per se, is involved in the action of glucose

and insulin to stimulate leptin secretion. For example, leptin

secretion is inversely related to the proportion of glucose

that is metabolized to lactate.11 Furthermore, metformin, an

antidiabetic drug that stimulates adipocyte glucose uptake,

appears to inhibit leptin secretion by increasing the anaero-

bic metabolism of glucose to lactate.30 Our present data

shows that Trecadrine does not alter the percentage of

glucose carbon released as lactate, suggesting that Treca-

drine-induced inhibition of leptin production is not

mediated by increasing anaerobic glucose metabolism.

Our previous results suggest that glucose utilization sti-

mulates leptin production by directing the metabolism of

glucose to a fate other than anaerobic lactate production,

possibly oxidation or lipogenesis.11,30,36 Trecadrine did not,

however, significantly alter the percentage of glucose meta-

bolized to triglyceride or to CO2, either in the absence or

presence of insulin. In this study, insulin substantially

increased the percentage of glucose oxidized to CO2, while

it did not significantly affect the percentage of glucose

incorporated into triglyceride. This suggests that the effect

of glucose utilization to stimulate leptin production involves

the oxidative metabolism of glucose to CO2. Therefore, a

mechanism independent of altering the pathways of glucose

metabolism is likely be involved in the effect of Trecadrine to

inhibit leptin expression and secretion.

Binding of agonists to b-ARs activates the adenylate

cyclase causing an increase of intracellular c-AMP.18 Inter-

ventions that elevate c-AMP, such as incubation with for-

skolin or isoproterenol, inhibit leptin release by adipose

tissue.37 The mechanisms underlying this inhibition are

not known. Activation of b3-adrenoceptors stimulates lipo-

lysis in adipose tissue.24,38 An increase in the activity of

hormone sensitive lipase, the enzyme that catalyzes the

hydrolysis of triglyceride to glycerol and fatty acids,39 has

Figure 3 Effects of Trecadrine on basal (A) and insulin-stimulated (B)
glucose utilization by isolated rat adipocytes over 96 h in culture. Data
are mean� s.e. of six independent experiments. *P<0.05; **P<0.01;
and ***P<0.001. aP<0.05; bP<0.01 vs insulin-treated cells.

Table 1 Effects of Trecadrine on glucose metabolism. Lactate production, the percentage of glucose carbon released
as lactate, and lipogenesis as assessed by the amount and the percentage of glucose carbon incorporated into
triglyceride (TG) were determined over 96 h in culture. The effects of Trecadrine on the percentage of glucose oxidized
to CO2 were analysed over 48 h in culture. Data are mean� s.e.m. of six independent experiments

Trecadrine (M)

Control 1077 1076 1075 1074

Lactate production (mmol) 4.1� 0.7 4.4� 0.8 4.6�0.8 4.9� 0.6** 5.6�0.7**

Glucose to lactate (%) 50.7� 10.6 42.6� 6.0 54.0�12.3 44.2� 5.9 40.3�4.5

Lipogenesis (nmol glu=mg TG) 1.9� 0.4 2.3� 0.4 2.4�0.4 2.8� 0.4** 2.9�0.4**

Glucose to TG (%) 27.2� 4.3 26.9� 6.6 30.9�6.6 25.3� 3.9 24.8�3.8

Glucose to CO2
a (%) 20.2� 1.7 ND 21.0�1.5 ND 18.6�1.1

**P<0.01; ND, non determined.
a
Determined in cultured cells obtained from different animals than the other parameters.
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been reported in adipose tissue of animals treated with

Trecadrine.40 In the present study, Trecadrine induced a

concentration-dependent increase of lipolysis as assessed by

glycerol release. Furthermore, an inverse relationship

between lipolysis and the inhibition of leptin secretion was

observed. The increase in glycerol suggests a parallel increase

in FFA resulted from the lipolytic effect of Trecadrine, as has

been previously reported with norepinephrine.41 It has been

shown that FFAs can inhibit leptin expression and secretion

by adipocytes.17 A decrease in the insulin-stimulated activity

of the leptin promoter in primary rat adipocytes has also

been reported after treatment with FFA.42 This suggests that

the effect of Trecadrine to suppress leptin expression and

secretion may be a consequence of increased fatty acid

release. Another mechanism potentially involved in the

inhibition of leptin production by b3-adrenergic agonists is

activation of the ERK1=2 MAP kinase pathway which is

known to be induced by cAMP.43

In conclusion, Trecadrine inhibited leptin expression

and secretion by rat adipocytes. Trecadrine also increased

glucose utilization, but did not alter the anaerobic metabo-

lism of glucose to lactate or the incorporation of glucose into

lipid or glucose oxidation to CO2. These results suggest that

the inhibition of leptin expression and secretion induced by

Trecadrine is not mediated by alterations of the pathways of

adipocyte glucose metabolism. The inverse correlation

between leptin secretion and lipolysis, an index of the

activation of cAMP-dependent protein kinases, suggests

that activation of cAMP-dependent pathways mediates the

effects of b3-adrenergic agonists such as Trecadrine to inhibit

leptin expression and secretion.
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