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Bouncing states of a droplet on a liquid surface under generalized forcing
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Droplets can exhibit complex dynamics when vertically and sinusoidally forced by a liquid surface from
which they remain separated by a thin air cushion. Here we extend previous studies to include a family of
periodic forcing functions that vary smoothly from sinusoidal to square wave by changing a single parameter.
Through analytical and numerical work we find that the dynamics of the droplets and transitions between regular
and chaotic regimes are effectively controlled by the impulse imparted on the droplets over a half-period. We
also find that having nonsinusoidal forcing lowers the threshold amplitudes for most of the dynamical regimes.
This is explained on the basis of a correlation between impulse increases and subsequent energy increases.
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I. INTRODUCTION

Since the pioneering work of Couder et al. [1] demon-
strating that a droplet is able to bounce indefinitely without
coalescing on the surface of a vertically vibrated liquid bath,
the rebounding of such droplets has attracted a great deal
of attention, partly because controlled droplet bouncing may
be a promising way to manipulate fluids for microfluidic
operations [2], and partly due to its reminiscence of the
wave-particle duality [3,4]. The bouncing dynamics of drops
atop a liquid bath vibrated sinusoidally at a given frequency
has been previously studied [5–9], in the case where the
vibration frequency corresponds to a given excited wavelength
according to the dispersion relation of Faraday waves, while
a simple theoretical model of the bouncing states has been
developed [8,10] for the bouncing dynamics on a soap film
vertically and sinusoidally vibrated. Also, the vertical dynam-
ics of a bouncing droplet on a bath subjected to forcing signals
(FSs) composed of a combination of two commensurable
frequencies has been experimentally studied in a recent work
[11]. In all these cases diverse bouncing states were found,
including periodic and multiperiodic states as well as chaos, as
the amplitude of the harmonic FSs is varied. Beyond a critical
amplitude threshold the stationary bouncing state becomes
unstable due to the underlying wave field, giving rise to a
walking regime in which the drops walk across the liquid
surface.

In such previous works, however, the robustness of the
bouncing scenario (BS) against diversity in the vertical vi-
brations of the liquid surface frame was not studied since
harmonic vibrations have been systematically used because
of their simplicity. Clearly, this mathematically convenient
choice imposes a drastic and unnecessary restriction in the
BS, limiting thus its possible implications and applications
[12]. Thus, to fully explore and exploit the physics of the
BS, it seems appropriate to consider FSs exhibiting general

features of periodic signals which are the output of generic
(nonlinear) systems, therefore being appropriately represented
by Fourier series—not just by a single harmonic term. Since
there are infinitely many different waveforms, an important
question, both scientifically and technologically, is how can
one explain in physical terms—providing in turn a quantita-
tive characterization—the effect of the FS’s waveform on the
BS once its amplitude and period are fixed.

Here we theoretically and numerically show that for a
generic FS f (t ) having equidistant zeros, the impulse trans-
mitted by the signal over a half-period (hereafter referred to
simply as the signal’s impulse),

I ≡
∣∣∣∣
∫ T/2

0
f (t )dt

∣∣∣∣, (1)

is a relevant quantity that characterizes the effectiveness of
such FS. Here T is the period and I a quantity integrating
the conjoint effects of the signal’s amplitude, period, and
waveform. In the accelerating reference frame of the liquid
surface, f (t ) introduces a fictitious inertial force

..

f (t ) having
the same period T and an impulse given by

I ′ ≡
∣∣∣∣
∫ T/2

0

..

f (t )dt

∣∣∣∣ = |
.

f (t = T/2) −
.

f (t = 0)|, (2)

i.e., I ′ is given by the (absolute) difference between the slopes
of the FS at two of its consecutive zeros. The relevance of
the signal’s impulse has been observed previously in quite
different physical contexts, such as adiabatically ac driven pe-
riodic Hamiltonian systems [13], chaotic dynamics of a pump-
modulation Nd:YVO4 laser [14], ratchet transport [15–18],
discrete breathers in nonlinear oscillator networks [19], topo-
logical amplification effects in scale-free networks of signal-
ing devices [20], driven two-level systems and periodically
curved waveguide arrays [21], and control of chaos in damped
driven systems by secondary periodic excitations [22].
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FIG. 1. Schematic representation of a droplet bouncing on a soap
film vibrated with a vertical generic T -periodic displacement f (t ).
The soap film is pinned at (r, z) = (A, 0).

The effect of the FS’s impulse will be studied below
by generalizing the sinusoidal FS to a family of periodic
functions, related to Jacobian elliptic functions, which vary
smoothly from sinusoidal to square wave by varying a single
parameter (m). This family of signals will be introduced in
Sec. II, along with a model that describes the behavior of
droplets on a soap film in terms of a second-order ODE with
two parameters, the previously introducedm and an amplitude
parameter, �. That section also describes the analytical and
numerical tools used to address this problem, which include
energy-based analysis, numerical integration, extraction of
power spectra, and Lyapunov exponents (LEs) from the gener-
ated time series. Section III presents our results. We conclude
the paper with Sec. IV, a general conclusion.

II. MODEL SYSTEM AND FORCING FUNCTIONS

Figure 1 shows a schematic representation of a droplet
bouncing on a soap film vibrated with a vertical generic T -
periodic displacement f (t ).

A. Forcing functions

Specifically, we study the effect of the FS’s impulse by
generalizing the sinusoidal FS to the case

f (t ) = B arcsin[
√

m sn (�t ;m)]

arcsin(
√

m)
, (3)

where B is the amplitude of the vertical vibrations of the
accelerating frame, sn (·;m) is the Jacobian elliptic function
of parameterm ∈ [0, 1] [K (m) is the complete elliptic integral
of the first kind [23]], and � = �(m, T ) ≡ 4K (m)/T . When
m = 0, then f (t )m=0 = B sin (2πt/T ), i.e., one recovers the
canonical case of a sinusoidal FS [8,10], while in the other
limit, m = 1, one recovers a square wave function of ampli-
tude B and period T . The effect of renormalization of the el-
liptic sine argument in Eq. (3) is clear: with T constant, solely
the FS shape is varied by increasing the shape parameter m

from zero to 1, and there is thus a smooth transition from a
sine function to a square wave [see Fig. 2(a)].

Similar to the case of a sinusoidal FS, writing the force
balance in the accelerating reference frame introduces the
(dimensionless) periodic forcing term −F (τ ) with

F (τ ) ≡ �A sn(�′τ ;m) dn(�′τ ;m), (4)

where � ≡ 4π2B/(gT ′2), A = A(m) ≡ 4
√

mK2(m)/[π2

arcsin(
√

m)], g is the gravitational acceleration, dn (·;m) is
the Jacobian elliptic function of parameter m ∈ [0, 1], �′ =
�′(m, T ′) ≡ 4K (m)/T ′, T ′ ≡ √

k/mdT , and τ ≡ √
k/mdt ,
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FIG. 2. (a) Forcing signal f (t ) [Eq. (3)] vs time over a signal
period and (b) corresponding periodic forcing term in the accelerat-
ing reference frame F (τ ) [Eq. (4)] vs time over a forcing period for
three values of the shape parameter: m = 0, 0.992, and 0.999 (dot-
ted, shaded, and solid lines, respectively). (c) Normalized impulse
functions, Inorm ≡ I (m)/I (m = 0) [Eq. (5), solid line] and I ′

norm ≡
I ′(m)/I ′(m = 0) [Eq. (6), dotted line], and normalized first Fourier
coefficient of f (t ), a0,norm ≡ a0(m)/a0(m = 0) [Eq. (13), dashed
line], vs the shape parameter m. (d) Effective force − dU

dy
(y ) ≡

−1 − yH (−y ) (dashed line) and corresponding effective potential
U (y ) ≡ y + y2H (−y )/2 + 1/2 associated with the forces exerted
by the gravitational field and by the soap film.

with k and md being the effective spring constant [8] and
the mass of the droplet, respectively. When m = 0, then
F (τ )m=0 = � sin (ω0τ ) with ω0 ≡ �′(m = 0, T ′) = 2π/T ′,
i.e., one recovers the case of a sinusoidal FS, while both the
amplitude and the shape of F (τ ) are varied by increasing
the shape parameter m from zero to 1 [see Fig. 1(b)]. Af-
ter applying the definition given by Eq. (1) to the periodic
functions f (t ) and F (τ ) [cf. Eqs. (3) and (4), respectively]
and using standard tables of integrals [24], one can obtain
the dependence on the shape parameter m of their respective
impulses I and I ′ [see Fig. 2(c)]:

I (m) ≡
∫ T/2

0
f (t )dt = BT

∞∑
n=0

bnan(m), (5)

I ′(m) ≡
∫ T ′/2

0
F (τ )dτ = 2�T ′√mK (m)

π2 arcsin(
√

m)
, (6)

where the coefficients bn and an(m) are given below. Note that
the functions I (m), I ′(m), a0(m) monotonically increase as
the shape parameter m is increased from zero, while keeping
constant B and T , which allows us to expect impulse-induced
dynamical changes in the BS, as shown below.

After Taylor expanding the function arcsin [sn (�t ;m)] in
Eq. (3), one straightforwardly obtains the impulse I (m) given
by Eq. (5) with

bn ≡ (2n)!

22n(n!)2(2n + 1)
, (7)

an(m) ≡ mn+1/2

4K (m) arcsin
(√

m
)

∫ 2K (m)

0
sn2n+1 (p;m)dp, (8)
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where the integrals in Eq. (8) can be obtained in closed
analytical form by usingMathematica:

∫ 2K (m)

0
sn (p;m)dp = 2√

m
arctanh(

√
m), (9)

∫ 2K (m)

0
sn3 (p;m)dp = −√

m + (1 + m) arctanh(
√

m)

m3/2
,

(10)∫ 2K (m)

0
sn5 (p;m)dp = −3

√
m(1 + m)

4m5/2

+ [3 + m(2 + 3m)] arctanh(
√

m)

4m5/2
,

· · · . (11)

Similarly, after applying standard tables of integrals [24], one
straightforwardly obtains the impulse I ′(m) given by Eq. (6).
We next provide the Fourier series of the FS f (t ) [Eq. (3)] and
its second derivative F (t ) ≡

..

f (t ) [Eq. (4)]. After noting that

.

f (t ) = 4B
√

mK (m)

T arcsin(
√

m)
cn(�t ;m) (12)

and using the Fourier series of the Jacobian elliptic function
[23] cn (·;m), one obtains

f (t ) = B

∞∑
n=0

an(m) sin [(2n + 1)�0t],

an(m) ≡
2 sech

[(
n + 1

2

)
πK (1−m)

K (m)

]
(2n + 1) arcsin(

√
m)

, (13)

where �0 ≡ 2π/T . After taking the second derivative of the
series in Eq. (13), one obtains

F (t ) = g�

∞∑
n=0

bn(m) sin [(2n + 1)�0t],

bn(m) ≡
2(2n + 1) sech

[(
n + 1

2

)
πK (1−m)

K (m)

]
arcsin(

√
m)

. (14)

Note that bn(m) = (2n + 1)2an(m), and hence

bn(m)

bn(m = 0)
= an(m)

an(m = 0)
, (15)

i.e., the dependence of the respective (normalized) Fourier
coefficients of the FS and its second time derivative are the
same, as expected, which allows us to understand the com-
mon dependence on the shape parameter of their associated
(normalized) impulse functions [cf. Fig. 2(c)]. Figure 3 shows
the relative size of the second and third Fourier coefficients
with respect to the first one as a function of the shape param-
eter, illustrating thus the extremely rapid convergence of the
Fourier series even for values of m very close to 1.

B. Model system

Introducing the FS just described into a model of bouncing
states [8,10] one obtains

..
y + dU/dy = −H (−y)�| .

y| .
y + �A sn(�′τ ;m)

× dn(�′τ ;m), (16)
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FIG. 3. Normalized second and third Fourier coefficients of the
FS f (t ), a1(m)/a0(m) and a2(m)/a0(m) [cf. Eq. (13); solid and
dashed lines, respectively], vs the shape parameter m over the ranges
(a) m ∈ [0, 1–10−14] and (b) m ∈ [0.99, 1–10−14].

where all parameters and variables are dimensionless,
.
y ≡

dy/dτ , U (y) ≡ y + y2H (−y)/2 + 1/2 is the effective po-
tential associated with the forces exerted by the gravitational
field and by the soap film [see Fig. 1(d)],H (·) is the Heaviside
function, � is an experimentally adjustable parameter, while
y ≡ −kz/(mdg) provides a measure of the vertical position
of the droplets (see Fig. 1). This model will be analyzed in the
next section.

III. RESULTS

A. Numerical methods

The differential system (16) was integrated by using a
fourth-order Runge-Kutta method with time steps chosen in
the range �τ = 0.001–0.005. The simplest way to visualize
the effect of the FS’s impulse is to study the evolution of the
attracting orbits as the shape parameter m (or the normalized
amplitude �) is varied. To provide different ways of dealing
with the possibility of impulse-induced multiple attractors, we
considered two options for the initial conditions for each of
the parameter values of the bifurcation diagrams. In one case,
we initialized on the last state found for the previous, slightly
smaller parameter value (i.e., “following the attractor”), while
we initialized on the same, fixed initial condition for each new
parameter value in the other case. The numerical integration
of Eq. (16) yields pseudo-orbits of the system in the form of
time series y(τ ),

.
y(τ ); a standard fast Fourier transform then

yields the power spectrum S(ω) = |a(ω)|2. Usual averaging
procedures were used to improve its quality [25]. Examples
of time series and corresponding power spectra are shown
below. We calculated LEs by using a version of the algorithm
introduced in Ref. [26], with integration typically up to 104

drive cycles for each fixed set of parameters. To construct
the LE diagrams we followed two steps. First, the maximal
LE, λ+, was calculated for each point on a N × N grid with
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FIG. 4. Bifurcation diagrams for the (dimensionless) variable dy/dτ corresponding to Eq. (16), with the (dimensionless) amplitude factor
� in the range 0.06 ≤ � ≤ 2 and two values of the shape parameter: (a), (b) m = 0 and (c), (d) m = 0.9999. The same initial conditions were
set for every value of � in versions (b) and (d), while versions (a) and (c) correspond to the case of initial conditions following the attractor.
Fixed parameters: � = 0.01, T ′ = 5.1927.

amplitude factor � and shape parameter m along the horizon-
tal and vertical axes. Second, a diagram was constructed by
only plotting points on the grid according to a color code. The
temporal average energy 〈E〉 was typically calculated over
105 forcing cycles after the transients had been removed.

B. Energy-based analysis

By analyzing the variation of the droplets’ energy, one can
rationalize both the impulse-induced emergence of complex-
ity (multiperiodicity) and the impulse-induced emergence of
chaos. Indeed, Eq. (16) has the associated energy equation

dE

dτ
= −H (−y)�| .

y| .
y
2 + �A

.
y sn(�′τ ;m) dn(�′τ ;m),

(17)

where E(τ ) ≡ .
y
2
/2 + U (y) is the energy function. Integra-

tion of Eq. (17) over any interval [nT ′, nT ′ + T ′/2], n =
0, 1, 2, . . ., yields

E(nT ′ + T ′/2)

= E(nT ′) − �

∫ nT ′+T ′/2

nT ′
H (−y)| .

y| .
y
2
dτ

+�A

∫ nT ′+T ′/2

nT ′

.
y sn(�′τ ;m) dn(�′τ ;m)dτ. (18)

Now, after applying the first mean value theorem for integrals
[27] together with well-known properties of the Jacobian
elliptic functions [23] to the last integral on the right-hand side

of Eq. (18), one has

E(nT ′ + T ′/2) = E(nT ′) − �

∫ nT ′+T ′/2

nT ′
H (−y)| .

y| .
y
2
dτ

+ �T ′I ′(m) |�=T ′=1
.
y(τ ∗), (19)

where the remaining integral in Eq. (19) represents the dissi-
pation work, τ ∗ ∈ [nT ′, nT ′ + T ′/2], while

I ′(m) |�=T ′=1≡ 2
√

mK (m)

π2 arcsin(
√

m)
(20)

is the impulse transmitted per unit of period and unit of
amplitude [cf. Eq. (6)]. One can understand the occurrence
of impulse-induced onset of chaos, by analyzing Eq. (19):
a simple heuristic argument is given next. Let us consider
fixing the parameters (�,�, T ′) for the droplet’s motion to
present a periodic orbit near the bottom of the potential
well at m = 0. Since the initial state is a steady (periodic)
state, τ ∗ will depend solely on the FS but not on n. In
this situation, one increases m while holding the remaining
parameters constant. For values m > 0 such that the state of
the bouncing droplet is still a periodic orbit (which will be
relatively near the initial periodic orbit in phase space), one
expects that

.
y(τ ∗) and the remaining integral in Eq. (19)

will maintain approximately their initial values (at m = 0)
while the impulse I ′(m) |�=T ′=1 will rise from its initial value.
This means that, in some case depending upon the remaining
parameters and the sign of

.
y(τ ∗), the energy increment �E ≡

E(nT ′ + T ′/2) − E(nT ′) > 0 could be enough to surpass the
energy threshold to reach a different periodic attractor or a
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FIG. 5. Time series of the (dimensionless) droplet position y [blue (black) thick line] and the forcing signal f [red (gray) line; Eq. (3)] vs
the number of driving cycles τ/T ′ ≡ t/T for four values of the shape parameter: (a) m = 0; (b) m = 0.78; (c) m = 0.95; (d) m = 1−10−14.
Fixed parameters: � = 1.7, � = 0.01, T ′ = 5.1927.

chaotic attractor, i.e., the oscillation amplitude threshold that
will allow escape from the basin of attraction of the initial
periodic orbit to be able to reach the basin of attraction of a
different periodic orbit or that of a chaotic attractor. Clearly
the probability of this event increases as the shape parameter
m is increased from zero, i.e., as the impulse transmitted is
increased from the value corresponding to a sinusoidal FS.

C. Bouncing scenario

Figure 4 shows examples of bifurcation diagrams which
were constructed by means of a Poincaré map at the param-
eters indicated in the caption to Fig. 4 and two values of the
shape parameter:m = 0 [(a) and (b)] andm = 0.9999 [(c) and
(d)]. Starting at � = 0.06, and taking the transient time as 500
forcing periods after every increment of �� = (2/3) × 10−2,
we typically sampled 20 forcing periods by picking up the first
dy/dτ value of every forcing cycle. The same initial condi-
tions were set for every � after �� was added in the diagrams
shown in panels (b) and (d), while those shown in panels (a)
and (c) correspond to the case of initial conditions following
the attractor. Examples of time series y(τ ) for several values
of the shape parameter and the corresponding power spectra
are shown in Figs. 5 and 6. When the FS is sinusoidal (m = 0)
one has a period-2 solution [Figs. 5(a) and 6]. After slightly
increasing the impulse (m = 0.78), a period-2 solution still
occurs [Fig. 5(b)], such that only the peaks corresponding to
odd subharmonics, ω = 3ω0, 5ω0, 7ω0, . . ., are higher than
those associated with the power spectrum of the period-2
solution existing for m = 0 (compare the two lowermost lines

in Fig. 6). Further increase of the impulse may give rise
to chaos, as for m = 0.95 [cf. Fig. 5(c)], which is reflected
in the visible enhancement of the power background in the
corresponding power spectrum (second line from the top in
Fig. 6). This further effect is ever higher as m → 1, i.e., as the
FS approximates a square wave function [see Fig. 2(a)], as for
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FIG. 6. Power spectra [log10 |S(ω)| vs ω/ω0, with ω0 ≡ 2π/T ′]
corresponding to the time series

.
y(τ ) arising from Eq. (16) for four

values of the shape parameter: m = 0, 0.78, 0.95, and 1−10−14

(lines from bottom to top, respectively). Fixed parameters: � =
1.7, � = 0.01, T ′ = 5.1927.
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m = 1−10−14 [Fig. 5(d) and uppermost line in Fig. 6]. The
power of the four spectra shown in Fig. 6 is exactly the same
at the fundamental (driving) frequency ω = ω0 ≡ 2π/T ′, as
expected.

As already mentioned above, Fig. 3 shows the relative
dependence on the shape parameter of the second, a1(m),
and third, a2(m), Fourier coefficients of the FS [cf. Eqs. (13)
and (14)] with respect to the first one, a0(m), indicating the
extremely rapid convergence of the Fourier series even for
values of m very close to 1. Thus, regarding experiments, this
property is relevant in the sense that it allows one to effectively
approximate the elliptic FS by solely retaining the first two
harmonics of its Fourier expansion over a sufficiently large
range of values of the shape parameter (0 ≤ m � 0.99; see
Fig. 3):

f (t ) ≈ B[a0(m) sin (�0t ) + a1(m) sin (3�0t )], (21)

where �0 ≡ 2π/T [cf. Eq. (13)]. The second-order nonau-
tonomous differential equation (16) may be solved subject
to the initial conditions y(0) = 0,

.
y(0) = −V at impact.

Here we are mainly interested in investigating the structural
stability of the BS under changes in the FS’s impulse (i.e., in
the shape parameter m), while keeping constant the remaining
parameters. For the sake of comparison with previous studies,
we will assume parameter values which were used in the
simple case of a soap film vertically and sinusoidally vibrated
[8,10]. Our numerical simulations show that an effect of
increasing the impulse transmitted by the FS is to diminish
the value of its amplitude factor � at which the bouncing
droplet undergoes a period-doubling transition both in the
case of initial conditions “following the attractor” and in the
case of fixed initial conditions (see Fig. 4). Another effect of
increasing the impulse is to diminish the threshold value of
the amplitude factor � at which the chaotic behavior appears,
�chaos = �chaos(m), again in the two cases of initial conditions
(see Fig. 4). The same aforementioned impulse-induced dy-
namical features can be seen in the bifurcation diagrams for
the variable dy/dτ with the shape parameter m in the range
0 ≤ m ≤ 1−10−14, which are shown in Fig. 7.

Additional information of the bouncing motions appearing
at different values of the shape parameter can be obtained
by analyzing the spectral properties of the corresponding
solutions (see Fig. 6). The comparison of such power spectra
indicates that only the power associated with the peaks corre-
sponding to odd subharmonics increases as the impulse trans-
mitted is increased (i.e., as m is increased from zero), which
is a consequence of the increase of the relative weight of such
subharmonics in the Fourier series of both f (t ) and F (τ )
[Eqs. (13) and (14), respectively] as m → 1. Furthermore, our
numerical simulations indicate that the extension of the region
in phase space which is visited by the corresponding chaotic
attractors existing at � > �chaos(m) increases as the shape
parameter m is increased, i.e., as the impulse transmitted is
increased. We systematically studied the chaotic regime by
calculating Lyapunov exponents (LEs), as in the example
shown in Fig. 8. One sees again that the effect of increasing
the impulse (i.e., the shape parameter m) is to diminish
the threshold value of the amplitude factor � at which the
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FIG. 7. Bifurcation diagrams for the (dimensionless) variable
dy/dτ with the (dimensionless) shape parameter m in the range
0 � m � 1−10−14 and two values of the amplitude factor: (a), (b)
� = 1.7 and (c), (d) � = 1.8. The same initial conditions were set
for every value of m in versions (b) and (d), while versions (a) and
(c) correspond to the case of initial conditions following the attractor.
Fixed parameters: � = 0.01, T ′ = 5.1927.

chaotic behavior appears: �chaos(m > m�) < �chaos(m�) with
0 � m� < 1.

Remarkably, our computations of the temporal average
energy, 〈E〉, confirmed the predictions from the energy-based
analysis (see Sec. III B). Indeed, we found an excellent corre-
lation among the temporal average energy 〈E〉, the impulse I ′
[Eq. (6)], and the maximal LE λ+ as functions of the shape
parameter m over the complete range of periodic solutions
(compare Figs. 2 and 9), while we found an approximate
correlation over the complete range of chaotic solutions (see
Fig. 9, bottom panels). The asymptotic behavior of 〈E〉 and
λ+ as m → 1 is ultimately due to the functional dependence
[24] of K (m) on m.

When the coefficient � [Eq. (16)] is sufficiently small,
one can expect the appearance of the phenomenon of
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FIG. 8. Maximal Lyapunov exponent (λ+) distribution in the
(� − m) parameter plane corresponding to solutions of the model
(16) for � = 0.01, T ′ = 5.1927.
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FIG. 9. Maximal LE, λ+, and temporal average energy, 〈E〉,
as functions of the shape parameter m over (top panels) periodic
and (bottom panels) chaotic ranges for � = 0.01, � = 1.8, T ′ =
5.1927. Solid lines are solely plotted to guide the eye.

multistability [28]. We have indeed detected the coexistence
of different attractors when the amplitude parameter � is
varied for a given set of the remaining parameters. Figure 10
shows an example for four randomly chosen initial conditions
and m = 0, � = 0.01. We found that multistability occurs
over an intermediate range of � values between two ranges
of monostability (a period-1 attractor for sufficiently small
amplitudes and a chaotic attractor for sufficiently large ampli-
tudes). Remarkably, we also observed multistability when the
shape parameter m is varied while the remaining parameters
are held constant. Figure 11 shows an example for four
randomly chosen initial conditions and � = 0.04, � = 0.01.
One sees the coexistence of period-1, period-2, and period-3
attractors over distinct ranges of m values. Thus reshaping a
FS appears as an alternative procedure to control multistability
[28].

IV. CONCLUSIONS

Our theoretical and numerical results show that the im-
pulse transmitted by the forcing signal which yields vertical
vibrations of a liquid surface frame is a fundamental quantity
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FIG. 10. Bifurcation diagrams for the (dimensionless) variable
dy/dτ corresponding to Eq. (16), with the (dimensionless) amplitude
factor � in the range 0.06 � � � 2 and four randomly chosen initial
conditions in versions (a), (b), (c), and (d), respectively. The same
initial conditions were set for every value of � in each version. Fixed
parameters: � = 0.01, T ′ = 5.1927, m = 0.

for the reliable control of the scenario associated with the
stationary bouncing regime of droplets. Specifically, we have
shown through a single model that the values of the forcing
signal’s amplitude at which different dynamical bifurcations
occur, such as transitions from simple periodic states to com-
plex periodic, as well as transitions from periodic states to
chaotic states can be suitably diminished by increasing the
impulse transmitted, while keeping constant the remaining
parameters. We have analytically shown that this effect of
the impulse may be understood on the basis of a correlation
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FIG. 11. Bifurcation diagrams for the (dimensionless) variable
dy/dτ with the (dimensionless) shape parameter m in the range 0 �
m � 0.999 and four randomly chosen initial conditions in versions
(a), (b), (c), and (d), respectively. The same initial conditions were
set for every value ofm in each version. Fixed parameters:� = 0.01,
T ′ = 5.1927, � = 0.4.
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between increases of the impulse and subsequent increases
of the energy transmitted by the vertical acceleration of the
liquid surface. We have also found that multistability can be
effectively controlled by the impulse imparted on the droplets.

Moreover, the present bouncing droplets scenario contains
and extends the prevalent one, since the latter essentially
arises from the systematic application of sinusoidal forcing
signals and hence its control depends upon two quantities
that have systematically been assumed to be independent of
each other: the amplitude and the frequency of the sinusoidal
signal. In contrast, the present bouncing droplets scenario
identifies a single quantity—the impulse transmitted by the
forcing signal per unit of period and unit of amplitude—
which is controlled by a single parameter while providing
reliable control of the droplets’ dynamic irrespective of the
forcing signal waveform. It is worth mentioning that two FSs
transmitting the same impulse but with different period and
amplitude can yield different BSs because of the possible
existence of resonances with underlying periodic solutions.

More importantly, we have shown that an effective experimen-
tal realization of the impulse-based control of the droplets’
dynamic can be readily achieved by solely implementing the
two first harmonics of the Fourier series of our generalized
forcing signal, which facilitates its application in microflu-
idics. In addition, our work could shed some light on our
understanding and control of the hydrodynamics of pilot wave
systems.
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