167 research outputs found

    Drosophila Ge-1 Promotes P Body Formation and oskar mRNA Localization

    Get PDF
    mRNA localization coupled with translational control is a widespread and conserved strategy that allows the localized production of proteins within eukaryotic cells. In Drosophila, oskar (osk) mRNA localization and translation at the posterior pole of the oocyte are essential for proper patterning of the embryo. Several P body components are involved in osk mRNA localization and translational repression, suggesting a link between P bodies and osk RNPs. In cultured mammalian cells, Ge-1 protein is required for P body formation. Combining genetic, biochemical and immunohistochemical approaches, we show that, in vivo, Drosophila Ge-1 (dGe-1) is an essential gene encoding a P body component that promotes formation of these structures in the germline. dGe-1 partially colocalizes with osk mRNA and is required for osk RNP integrity. Our analysis reveals that although under normal conditions dGe-1 function is not essential for osk mRNA localization, it becomes critical when other components of the localization machinery, such as staufen, Drosophila decapping protein 1 and barentsz are limiting. Our findings suggest an important role of dGe-1 in optimization of the osk mRNA localization process required for patterning the Drosophila embryo

    Ribosomal RNA 2â€ČO-methylation as a novel layer of inter-tumour heterogeneity in breast cancer

    Get PDF
    International audienceRecent epitranscriptomics studies unravelled that ribosomal RNA (rRNA) 2â€ČO-methylation is an additional layer of gene expression regulation highlighting the ribosome as a novel actor of translation control. However, this major finding lies on evidences coming mainly, if not exclusively, from cellular models. Using the innovative next-generation RiboMeth-seq technology, we established the first rRNA 2â€ČO-methylation landscape in 195 primary human breast tumours. We uncovered the existence of compulsory/stable sites, which show limited inter-patient variability in their 2â€ČO-methylation level, which map on functionally important sites of the human ribosome structure and which are surrounded by variable sites found from the second nucleotide layers. Our data demonstrate that some positions within the rRNA molecules can tolerate absence of 2â€ČO-methylation in tumoral and healthy tissues. We also reveal that rRNA 2â€ČO-methylation exhibits intra- and inter-patient variability in breast tumours. Its level is indeed differentially associated with breast cancer subtype and tumour grade. Altogether, our rRNA 2â€ČO-methylation profiling of a large-scale human sample collection provides the first compelling evidence that ribosome variability occurs in humans and suggests that rRNA 2â€ČO-methylation might represent a relevant element of tumour biology useful in clinic. This novel variability at molecular level offers an additional layer to capture the cancer heterogeneity and associates with specific features of tumour biology thus offering a novel targetable molecular signature in cancer

    Structural and functional analysis of the Rous Sarcoma virus negative regulator of splicing and demonstration of its activation by the 9G8 SR protein

    Get PDF
    Retroviruses require both spliced and unspliced RNAs for replication. Accumulation of Rous Sarcoma virus (RSV) unspliced RNA depends upon the negative regulator of splicing (NRS). Its 5â€Č-part is considered as an ESE binding SR proteins. Its 3â€Č-part contains a decoy 5â€Č-splice site (ss), which inhibits splicing at the bona fide 5â€Č-ss. Only the 3D structure of a small NRS fragment had been experimentally studied. Here, by chemical and enzymatic probing, we determine the 2D structure of the entire RSV NRS. Structural analysis of other avian NRSs and comparison with all sequenced avian NRSs is in favour of a phylogenetic conservation of the NRS 2D structure. By combination of approaches: (i) in vitro and in cellulo splicing assays, (ii) footprinting assays and (iii) purification and analysis of reconstituted RNP complex, we define a small NRS element retaining splicing inhibitory property. We also demonstrate the capability of the SR protein 9G8 to increase NRS activity in vitro and in cellulo. Altogether these data bring new insights on how NRS fine tune splicing activity

    Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations

    Get PDF
    We analyse simulations performed for the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion caused by anthropogenic stratospheric chlorine and bromine. We consider a total of 155 simulations from 20 models, including a range of sensitivity studies which examine the impact of climate change on ozone recovery. For the control simulations (unconstrained by nudging towards analysed meteorology) there is a large spread (±20DU in the global average) in the predictions of the absolute ozone column. Therefore, the model results need to be adjusted for biases against historical data. Also, the interannual variability in the model results need to be smoothed in order to provide a reasonably narrow estimate of the range of ozone return dates. Consistent with previous studies, but here for a Representative Concentration Pathway (RCP) of 6.0, these new CCMI simulations project that global total column ozone will return to 1980 values in 2049 (with a 1σ uncertainty of 2043–2055). At Southern Hemisphere mid-latitudes column ozone is projected to return to 1980 values in 2045 (2039–2050), and at Northern Hemisphere mid-latitudes in 2032 (2020–2044). In the polar regions, the return dates are 2060 (2055–2066) in the Antarctic in October and 2034 (2025–2043) in the Arctic in March. The earlier return dates in the Northern Hemisphere reflect the larger sensitivity to dynamical changes. Our estimates of return dates are later than those presented in the 2014 Ozone Assessment by approximately 5–17 years, depending on the region, with the previous best estimates often falling outside of our uncertainty range. In the tropics only around half the models predict a return of ozone to 1980 values, around 2040, while the other half do not reach the 1980 value. All models show a negative trend in tropical total column ozone towards the end of the 21st century. The CCMI models generally agree in their simulation of the time evolution of stratospheric chlorine and bromine, which are the main drivers of ozone loss and recovery. However, there are a few outliers which show that the multi-model mean results for ozone recovery are not as tightly constrained as possible. Throughout the stratosphere the spread of ozone return dates to 1980 values between models tends to correlate with the spread of the return of inorganic chlorine to 1980 values. In the upper stratosphere, greenhouse gas-induced cooling speeds up the return by about 10–20 years. In the lower stratosphere, and for the column, there is a more direct link in the timing of the return dates of ozone and chlorine, especially for the large Antarctic depletion. Comparisons of total column ozone between the models is affected by different predictions of the evolution of tropospheric ozone within the same scenario, presumably due to differing treatment of tropospheric chemistry. Therefore, for many scenarios, clear conclusions can only be drawn for stratospheric ozone columns rather than the total column. As noted by previous studies, the timing of ozone recovery is affected by the evolution of N2O and CH4. However, quantifying the effect in the simulations analysed here is limited by the few realisations available for these experiments compared to internal model variability. The large increase in N2O given in RCP 6.0 extends the ozone return globally by ∌15 years relative to N2O fixed at 1960 abundances, mainly because it allows tropical column ozone to be depleted. The effect in extratropical latitudes is much smaller. The large increase in CH4 given in the RCP 8.5 scenario compared to RCP 6.0 also lengthens ozone return by ∌15 years, again mainly through its impact in the tropics. Overall, our estimates of ozone return dates are uncertain due to both uncertainties in future scenarios, in particular those of greenhouse gases, and uncertainties in models. The scenario uncertainty is small in the short term but increases with time, and becomes large by the end of the century. There are still some model–model differences related to well-known processes which affect ozone recovery. Efforts need to continue to ensure that models used for assessment purposes accurately represent stratospheric chemistry and the prescribed scenarios of ozone-depleting substances, and only those models are used to calculate return dates. For future assessments of single forcing or combined effects of CO2, CH4, and N2O on the stratospheric column ozone return dates, this work suggests that it is more important to have multi-member (at least three) ensembles for each scenario from every established participating model, rather than a large number of individual models

    METTL1 promotes tumorigenesis through tRNA-derived fragment biogenesis in prostate cancer

    Get PDF
    Newly growing evidence highlights the essential role that epitranscriptomic marks play in the development of many cancers; however, little is known about the role and implications of altered epitranscriptome deposition in prostate cancer. Here, we show that the transfer RNA N-7-methylguanosine (m(7)G) transferase METTL1 is highly expressed in primary and advanced prostate tumours. Mechanistically, we find that METTL1 depletion causes the loss of m(7)G tRNA methylation and promotes the biogenesis of a novel class of small non-coding RNAs derived from 5'tRNA fragments. 5'tRNA-derived small RNAs steer translation control to favour the synthesis of key regulators of tumour growth suppression, interferon pathway, and immune effectors. Knockdown of Mettl1 in prostate cancer preclinical models increases intratumoural infiltration of pro-inflammatory immune cells and enhances responses to immunotherapy. Collectively, our findings reveal a therapeutically actionable role of METTL1-directed m(7)G tRNA methylation in cancer cell translation control and tumour biology

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3â€Č-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Abstract: Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors
    • 

    corecore