121 research outputs found

    Secondary forest fragments offer important carbon‐biodiversity co‐benefits

    Get PDF
    Tropical forests store large amounts of carbon and high biodiversity, but are being degraded at alarming rates. The emerging global Forest and Landscape Restoration (FLR) agenda seeks to limit global climate change by removing carbon dioxide from the atmosphere through the growth of trees. In doing so, it may also protect biodiversity as a free co‐benefit, which is vital given the massive shortfall in funding for biodiversity conservation. We investigated whether natural forest regeneration on abandoned pastureland offers such co‐benefits, focusing for the first time on the recovery of taxonomic, phylogenetic and functional diversity of trees, including the recovery of threatened and endemic species richness, within isolated secondary forest fragments. We focused on the globally threatened Brazilian Atlantic Forest, where commitments have been made to restore one million hectares under FLR. Three decades after land abandonment, regenerating forests had recovered ~20% (72 Mg/ha−1) of the above‐ground carbon stocks of a primary forest, with cattle pasture containing just 3% of stocks relative to primary forests. Over this period, secondary forest recovered ~76% of taxonomic, 84% of phylogenetic and 96% of functional diversity found within primary forests. In addition, secondary forests had on average recovered 65% of threatened and ~30% of endemic species richness of primary Atlantic forest. Finally, we find positive relationships between carbon stock and tree diversity recovery. Our results emphasize that secondary forest fragments offer co‐benefits under FLR and other carbon‐based payments for ecosystem service schemes (e.g. carbon enhancements under REDD +). They also indicate that even isolated patches of secondary forest could help to mitigate climate change and the biodiversity extinction crisis by recovering species of high conservation concern and improving landscape connectivity

    A large‐scale assessment of plant dispersal mode and seed traits across human‐modified Amazonian forests

    Get PDF
    1. Quantifying the impact of habitat disturbance on ecosystem function is critical to understanding and predicting the future of tropical forests. Many studies have examined post-disturbance changes in animal traits related to mutualistic interactions with plants, but the effect of disturbance on plant traits in diverse forests has received much less attention. 2. Focusing on two study regions in the eastern Brazilian Amazon, we used a trait-based approach to examine how seed dispersal functionality within tropical plant communities changes across a landscape-scale gradient of human modification, including both regenerating secondary forests and primary forests disturbed by burning and selective logging. 3. Surveys of 230 forest plots recorded 26,533 live stems from 846 tree species. Using herbarium material and literature, we compiled trait information for each tree species, focusing on dispersal mode and seed size. 4. Disturbance reduced tree diversity and increased the proportion of lower wood density and small-seeded tree species in study plots. Disturbance also increased the proportion of stems with seeds that are ingested by animals and reduced those dispersed by other mechanisms (e.g. wind). Older secondary forests had function-ally similar plant communities to the most heavily disturbed primary forests. Mean seed size and wood density per plot were positively correlated for plant species with seeds ingested by animals. 5. Synthesis. Anthropogenic disturbance has major effects on the seed traits of tree communities, with implications for mutualistic interactions with animals. The important role of animal-mediated seed dispersal in disturbed and recovering forests highlights the need to avoid defaunation or promote faunal recovery. The changes in mean seed width suggest larger vertebrates hold especially important functional roles in these human-modified forests. Monitoring fruit and seed traits can provide a valuable indicator of ecosystem condition, emphasizing the importance of developing a comprehensive plant traits database for the Amazon and other biomes

    Identification and validation of a QTL influencing bitter pit symptoms in apple (Malus x domestica)

    Get PDF
    Bitter pit is one of the most economically important physiological disorders affecting apple fruit production, causing soft discrete pitting of the cortical flesh of the apple fruits which renders them unmarketable. The disorder is heritable; however, the environment and cultural practices play a major role in expression of symptoms. Bitter pit has been shown to be controllable to a certain extent using calcium sprays and dips; however, their use does not entirely prevent the incidence of the disorder. Previously, bitter pit has been shown to be controlled by two dominant genes, and markers on linkage group 16 of the apple genome were identified that were significantly associated with the expression of bitter pit symptoms in a genome-wide association study. In this investigation, we identified a major QTL for bitter pit defined by two microsatellite (SSR) markers. The association of the SSRs with the bitter pit locus, and their ability to predict severe symptom expression, was confirmed through screening of individuals with stable phenotypic expression from an additional mapping progeny. The data generated in this current study suggest a two gene model could account for the control of bitter pit symptom expression; however, only one of the loci was detectable, most likely due to dominance of alleles carried by both parents of the mapping progeny used. The SSR markers identified are cost-effective, robust and multi-allelic and thus should prove useful for the identification of seedlings with resistance to bitter pit using marker-assisted selection in apple breeding programs

    Propriedades de ZrO2 (Y2 O3) reciclado proveniente da confecção de próteses dentárias

    Get PDF
    RESUMO O objetivo deste trabalho foi a recuperação de descartes de ZrO2(Y2O3) oriundos de laboratórios de próteses dentárias, a partir do seu reprocessamento. Os descartes de ZrO2(Y2O3) foram fragmentados, peneirados e calcinados a 900ºC. Pós com tamanho menor que 32μm foram prensados uniaxialmente a 100MPa e sinterizados em temperaturas entre 1400 e 1600ºC-120min. Análise de difração de raios X realizadas nos materiais calcinados indicaram a presença majoritária da fase ZrO2 tetragonal. Os compactos apresentaram densidade a verde próximo a 47% e as amostras sinterizadas tiveram sua densidade relativa variando entre 83,5% e 95%, para temperaturas de sinterização de 1400 e 1600ºC, respectivamente. Os resultados da análise de difração de raios X indicaram a presença da fase ZrO2 tetragonal, com dureza Vickers e tenacidade máxima obtidos para as amostras sinterizadas a 1600ºC, da ordem de 1100 HV e 5,7 MPa.m1/2 respectivamente

    Woody lianas increase in dominance and maintain compositional integrity across an Amazonian dam-induced fragmented landscape

    Get PDF
    Tropical forest fragmentation creates insular biological communities that undergo species loss and changes in community composition over time, due to area- and edge-effects. Woody lianas thrive in degraded and secondary forests, due to their competitive advantage over trees in these habitats. Lianas compete both directly and indirectly with trees, increasing tree mortality and turnover. Despite our growing understanding of liana-tree dynamics, we lack detailed knowledge of the assemblage-level responses of lianas themselves to fragmentation, particularly in evergreen tropical forests. We examine the responses of both sapling and mature liana communities to landscape-scale forest insularization induced by a mega hydroelectric dam in the Brazilian Amazon. Detailed field inventories were conducted on islands created during reservoir filling, and in nearby mainland continuous forest. We assess the relative importance of variables associated with habitat fragmentation such as area, isolation, surrounding forest cover, fire and wind disturbance, on liana community attributes including abundance, basal area, diversity, and composition. We also explore patterns of liana dominance relative to tree saplings and adults ≥10 cm diameter at breast height. We find that 1) liana community composition remains remarkably similar across mainland continuous forest and islands, regardless of extreme area- and edge- effects and the loss of vertebrate dispersers in the latter; and 2) lianas are increasing in dominance relative to trees in the sapling layer in the most degraded islands, with both the amount of forest cover surrounding islands and fire disturbance history predicting liana dominance. Our data suggest that liana communities persist intact in isolated forests, regardless of extreme area- and edge-effects; while in contrast, tree communities simultaneously show evidence of increased turnover and supressed recruitment. These processes may lead to lianas becoming a dominant component of this dam-induced fragmented landscape in the future, due to their competitive advantage over trees in degraded forest habitats. Additional loss of tree biomass and diversity brought about through competition with lianas, and the concurrent loss of carbon storage, should be accounted for in impact assessments of future dam development
    corecore