158 research outputs found
Functional stability of a ferromagnetic polycrystalline Ni2MnGa high temperature shape memory alloy
Electrocaloric Ni 2 MnGa is of interest for solid state refrigeration applications, as well as a high temperature thermal shape memory alloy. Here, polycrystalline Ni 54 Mn 25 Ga 21 is examined using in situ synchrotron X-ray di raction. The initial martensite ( M f ) and austenite ( A f ) finish temperatures were found to be 232 C and 298 C respectively. M f was observed to decline by 8 C / cycle and A f increased by 1 C / cycle. Both below and surprisingly, above the Curie temperature, the application of an e.m.f. was found to a ect the lattice parameters measured. A change in the thermal expansion of the two phases was found around the Curie temperature
Gap structure in the electron-doped Iron-Arsenide Superconductor Ba(Fe0.92Co0.08)2As2: low-temperature specific heat study
We report the field and temperature dependence of the low-temperature
specific heat down to 400 mK and in magnetic fields up to 9 T of the
electron-doped Ba(Fe0.92Co0.08)2As2 superconductor. Using the phonon specific
heat obtained from pure BaFe2As2 we find the normal state Sommerfeld
coefficient to be 18 mJ/mol.K^2 and a condensation energy of 1.27 J/mol. The
temperature dependence of the electronic specific heat clearly indicate the
presence of the low-energy excitations in the system. The magnetic field
variation of field-induced specific heat cannot be described by single clean s-
or d-wave models. Rather, the data require an anisotropic gap scenario which
may or may not have nodes. We discuss the implications of these results.Comment: New Journal of Physics in press, 10 pages, 5 figure
Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications
One of the most attractive routes for the production of hydrogen or syngas for use in fuel cell applications is the reforming and partial oxidation of hydrocarbons. The use of hydrocarbons in high temperature fuel cells is achieved through either external or internal reforming. Reforming and partial oxidation catalysis to convert hydrocarbons to hydrogen rich syngas plays an important role in fuel processing technology. The current research in the area of reforming and partial oxidation of methane, methanol and ethanol includes catalysts for reforming and oxidation, methods of catalyst synthesis, and the effective utilization of fuel for both external and internal reforming processes. In this paper the recent progress in these areas of research is reviewed along with the reforming of liquid hydrocarbons, from this an overview of the current best performing catalysts for the reforming and partial oxidizing of hydrocarbons for hydrogen production is summarized
Resonance optimization of polychromatic light in disordered structures
Disorder offers rich possibilities for manipulating the phase and intensity of light and designing photonic devices for various applications including random lasers, light storage, and speckle-free imaging. Disorder-based optical systems can be implemented in one-dimensional structures based on random or pseudo-random alternating layers with different refractive indices. Such structures can be treated as sequences of scatterers, in which spatial light localization is characterized by random sets of spectral transmission resonances, each accompanied by a relatively high-intensity concentration. The control and manipulation of resonances is the key element in designing disorder-based photonic systems. In this work, we introduce a method of controlling disorder-induced resonances by using the established non-trivial interconnection between the symmetry of bi-directional light propagation properties and the features of the resonant transmissions. Considering a fiber with resonant Bragg gratings as an example, the mechanism of enhancing or suppressing the resonant transmission of polychromatic light and the effectiveness of the method have been demonstrated both theoretically and experimentally. The proposed algorithm of controlling disorder-induced resonances is general and applicable to classical waves and quantum particles, for disordered systems both with and without gain
Renormalization group analysis of competing orders and the pairing symmetry in Fe-based superconductors
We analyze antiferromagnetism and superconductivity in novel Fe-based
superconductors within the weak-coupling, itinerant model of electron and hole
pockets near (0,0) and (\pi,\pi) in the folded Brillouin zone. We discuss the
interaction Hamiltonian, the nesting, the RG flow of the couplings at energies
above and below the Fermi energy, and the interplay between SDW magnetism,
superconductivity and charge orbital order. We argue that SDW
antiferromagnetism wins at zero doping but looses to superconductivity upon
doping. We show that the most likely symmetry of the superconducting gap is
A_{1g} in the folded zone. This gap has no nodes on the Fermi surface but
changes sign between hole and electron pockets. We also argue that at weak
coupling, this pairing predominantly comes not from a spin fluctuation exchange
but from a direct pair hopping between hole and electron pockets.Comment: A review on RG approach for the special issue of Physica C on
Fe-based superconductors. 15 pp, 8 figure
Preparation of TiO2 Anatase Nanocrystals by TiCl4 Hydrolysis with Additive H2SO4
A new methodology was developed to synthesize uniform titania anatase nanocrystals by the hydrolysis of titanium chloride in sulfuric acid aqueous solutions at 0–90°C. The samples were characterized by Raman spectroscopy, UV-visible spectroscopy, transmission electron microscopy (TEM), electron diffraction (ED), and an Energy dispersive X-ray spectroscopy (EDS). The effects of the reaction temperature, mole ratio of SO42− to Ti4+, and the calcinations temperature on the particle size and crystal phase were investigated. Depending on the acidity, the hydrolysis temperature, and the calcination temperature, rhombic anatase nanocrystals sizes in the range of 10 nm to 50 nm were obtained. In the additive of sulfuric acid, Raman spectra and electron diffraction confirmed that the nanoparticles are composed of anatase TiO2. No other titania phases, such as rutile or brookite, were detected
Time-resolved single-crystal X-ray crystallography
In this chapter the development of time-resolved crystallography is traced from its beginnings more than 30 years ago. The importance of being able to “watch” chemical processes as they occur rather than just being limited to three-dimensional pictures of the reactant and final product is emphasised, and time-resolved crystallography provides the opportunity to bring the dimension of time into the crystallographic experiment. The technique has evolved in time with developments in technology: synchrotron radiation, cryoscopic techniques, tuneable lasers, increased computing power and vastly improved X-ray detectors. The shorter the lifetime of the species being studied, the more complex is the experiment. The chapter focusses on the results of solid-state reactions that are activated by light, since this process does not require the addition of a reagent to the crystalline material and the single-crystalline nature of the solid may be preserved. Because of this photoactivation, time-resolved crystallography is often described as “photocrystallography”. The initial photocrystallographic studies were carried out on molecular complexes that either underwent irreversible photoactivated processes where the conversion took hours or days. Structural snapshots were taken during the process. Materials that achieved a metastable state under photoactivation and the excited (metastable) state had a long enough lifetime for the data from the crystal to be collected and the structure solved. For systems with shorter lifetimes, the first time-resolved results were obtained for macromolecular structures, where pulsed lasers were used to pump up the short lifetime excited state species and their structures were probed by using synchronised X-ray pulses from a high-intensity source. Developments in molecular crystallography soon followed, initially with monochromatic X-ray radiation, and pump-probe techniques were used to establish the structures of photoactivated molecules with lifetimes in the micro- to millisecond range. For molecules with even shorter lifetimes in the sub-microsecond range, Laue diffraction methods (rather than using monochromatic radiation) were employed to speed up the data collections and reduce crystal damage. Future developments in time-resolved crystallography are likely to involve the use of XFELs to complete “single-shot” time-resolved diffraction studies that are already proving successful in the macromolecular crystallographic field.</p
The Liver Tumor Segmentation Benchmark (LiTS).
In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2017 and 2018. The image dataset is diverse and contains primary and secondary tumors with varied sizes and appearances with various lesion-to-background levels (hyper-/hypo-dense), created in collaboration with seven hospitals and research institutions. Seventy-five submitted liver and liver tumor segmentation algorithms were trained on a set of 131 computed tomography (CT) volumes and were tested on 70 unseen test images acquired from different patients. We found that not a single algorithm performed best for both liver and liver tumors in the three events. The best liver segmentation algorithm achieved a Dice score of 0.963, whereas, for tumor segmentation, the best algorithms achieved Dices scores of 0.674 (ISBI 2017), 0.702 (MICCAI 2017), and 0.739 (MICCAI 2018). Retrospectively, we performed additional analysis on liver tumor detection and revealed that not all top-performing segmentation algorithms worked well for tumor detection. The best liver tumor detection method achieved a lesion-wise recall of 0.458 (ISBI 2017), 0.515 (MICCAI 2017), and 0.554 (MICCAI 2018), indicating the need for further research. LiTS remains an active benchmark and resource for research, e.g., contributing the liver-related segmentation tasks in http://medicaldecathlon.com/. In addition, both data and online evaluation are accessible via https://competitions.codalab.org/competitions/17094
The PLATO mission
PLATO (PLAnetary Transits and Oscillations of stars) is ESA’s M3 mission designed to detect and characterise extrasolar planets and perform asteroseismic monitoring of a large number of stars. PLATO will detect small planets (down to <2REarth) around bright stars (<11 mag), including terrestrial planets in the habitable zone of solar-like stars. With the complement of radial velocity observations from the ground, planets will be characterised for their radius, mass, and age with high accuracy (5%, 10%, 10% for an Earth-Sun combination respectively). PLATO will provide us with a large-scale catalogue of well-characterised small planets up to intermediate orbital periods, relevant for a meaningful comparison to planet formation theories and to better understand planet evolution. It will make possible comparative exoplanetology to place our Solar System planets in a broader context. In parallel, PLATO will study (host) stars using asteroseismology, allowing us to determine the stellar properties with high accuracy, substantially enhancing our knowledge of stellar structure and evolution. The payload instrument consists of 26 cameras with 12cm aperture each. For at least four years, the mission will perform high-precision photometric measurements. Here we review the science objectives, present PLATO‘s target samples and fields, provide an overview of expected core science performance as well as a description of the instrument and the mission profile towards the end of the serial production of the flight cameras. PLATO is scheduled for a launch date end 2026. This overview therefore provides a summary of the mission to the community in preparation of the upcoming operational phases
- …
