2,657 research outputs found

    Treated Wastewater and Nitrate Transport Beneath Irrigated Fields near Dodge City, Kansas

    Get PDF
    Use of secondary-treated municipal wastewater for crop irrigation south of Dodge City, Kansas, where the soils are mainly of silty clay loam texture, has raised a concern that it has resulted in high nitrate-nitrogen concentrations (10-50 mg/kg) in the soil and deeper vadose zone, and also in the underlying deep (20-45 m) ground water. The goal of this field-monitoring project was to assess how and under what circumstances nitrogen (N) nutrients under cultivated corn that is irrigated with this treated wastewater can reach the deep ground water of the underlying High Plains aquifer, and what can realistically be done to minimize this problem. We collected 15.2-m-deep cores for physical and chemical properties characterization; installed neutron moisture-probe access tubes and suction lysimeters for periodic measurements; sampled area monitoring, irrigation, and domestic wells; performed dye-tracer experiments to examine soil preferential-flow processes through macropores; and obtained climatic, crop, irrigation, and N-application rate records. These data and additional information were used in the comprehensive Root Zone Water Quality Model (RZWQM2) to identify key parameters and processes that influence N losses in the study area. We demonstrated that nitrate-N transport processes result in significant accumulations of N in the thick vadose zone. We also showed that nitrate-N in the underlying ground water is increasing with time and that the source of the nitrate is from the wastewater applications. RZWQM2 simulations indicated that macropore flow is generated particularly during heavy rainfall events, but during our 2005-06 simulations the total macropore flow was only about 3% of precipitation for one of two investigated sites, whereas it was more than 13% for the other site. Our calibrated model for the two wastewater-irrigated study sites indicated that reducing current levels of corn N fertilization by half or more to the level of 170 kg/ha substantially increases N-use efficiency and achieves near-maximum crop yield. Combining such measures with a crop rotation that includes alfalfa should further reduce the amounts of residual N in the soil, as indicated in one of the study sites that had alfalfa in past crop rotations

    Substrate lattice relaxations, spectral distortions, and nanoparticle inclusions of ion implanted zinc oxide

    Get PDF
    The authors would like to thank the support of the Fundamental Research Funds for the Central Universities of China, the National Natural Science Foundation of China (No.11205134), and Beijing Higher Education Young Elite Teacher Project (YETP0640).Low temperature radioluminescence and thermoluminescence spectra of ZnO track numerous changes produced by copper ion implantation into the surface layer. A significant, but unexpected, feature is that the bulk crystal becomes modified by the stress generated in the surface layer. This is reflected by the energy of intrinsic band gap emission. There are also differences in the spectra and peak temperatures of the thermoluminescence components, consistent with such a structural relaxation. The copper implant layer is both absorbing and reflective, so this introduces major distortions on the radioluminescence component from the bulk region, since the bulk luminescence signals are transmitted through, or reflected from, the implant layer. The temperature dependence of the spectra includes anomalies that are typical of changes driven by phase transitions of nanoparticle inclusions. Overall, the features of bulk relaxation, spectral distortion, and detection of nanoparticle inclusions are rarely considered for ion implanted luminescence studies, but the data suggest they are almost inevitable in a wide range of implanted materials.Publisher PDFPeer reviewe

    Attitudes towards the use and acceptance of eHealth technologies : a case study of older adults living with chronic pain and implications for rural healthcare

    Get PDF
    Acknowledgements The research described here is supported by the award made by the RCUK Digital Economy programme to the dot.rural Digital Economy Hub; award reference: EP/G066051/1. MC’s time writing the paper is funded by the Scottish Government’s Rural and Environmental Science and Analytical Services Division (RESAS) under Theme 8 ‘Vibrant Rural Communities’ of the Food, Land and People Programme (2011–2016). MC is also an Honorary Research Fellow at the Division of Applied Health Sciences, University of Aberdeen. The input of other members of the TOPS research team, Alastair Mort, Fiona Williams, Sophie Corbett, Phil Wilson and Paul MacNamee who contributed to be wider study and discussed preliminary findings reported here with the authors of the paper is acknowledged. We acknowledge the feedback on earlier versions of this paper provided by members of the Trans-Atlantic Rural Research Network, especially Stefanie Doebler and Carmen Hubbard. We also thank Deb Roberts for her comments.Peer reviewedPublisher PD

    Field test of a practical secure communication network with decoy-state quantum cryptography

    Full text link
    We present a secure network communication system that operated with decoy-state quantum cryptography in a real-world application scenario. The full key exchange and application protocols were performed in real time among three nodes, in which two adjacent nodes were connected by approximate 20 km of commercial telecom optical fiber. The generated quantum keys were immediately employed and demonstrated for communication applications, including unbreakable real-time voice telephone between any two of the three communication nodes, or a broadcast from one node to the other two nodes by using one-time pad encryption.Comment: 10 pages, 2 figures, 2 tables, typos correcte

    BPS States on M5-brane in Large C-field Background

    Full text link
    We extensively study BPS solutions of the low energy effective theory of M5-brane in large C-field background. This provides us an opportunity to explore the interactions turned on by C-field background through the Nambu-Poisson structure. The BPS states considered in this paper include the M-waves, the self-dual string (M2 ending on M5), tilted M5-brane, holomorphic embedding of M5-brane and the intersection of two M5-branes along a 3-brane.Comment: 25 pages, reference adde

    Metropolitan all-pass and inter-city quantum communication network

    Full text link
    We have demonstrated a metropolitan all-pass quantum communication network in field fiber for four nodes. Any two nodes of them can be connected in the network to perform quantum key distribution (QKD). An optical switching module is presented that enables arbitrary 2-connectivity among output ports. Integrated QKD terminals are worked out, which can operate either as a transmitter, a receiver, or even both at the same time. Furthermore, an additional link in another city of 60 km fiber (up to 130 km) is seamless integrated into this network based on a trusted relay architecture. On all the links, we have implemented protocol of decoy state scheme. All of necessary electrical hardware, synchronization, feedback control, network software, execution of QKD protocols are made by tailored designing, which allow a completely automatical and stable running. Our system has been put into operation in Hefei in August 2009, and publicly demonstrated during an evaluation conference on quantum network organized by the Chinese Academy of Sciences on August 29, 2009. Real-time voice telephone with one-time pad encoding between any two of the five nodes (four all-pass nodes plus one additional node through relay) is successfully established in the network within 60km.Comment: 9 pages, 2 figures, 2 table

    Global Priority Conservation Areas in the Face of 21st Century Climate Change

    Get PDF
    In an era when global biodiversity is increasingly impacted by rapidly changing climate, efforts to conserve global biodiversity may be compromised if we do not consider the uneven distribution of climate-induced threats. Here, via a novel application of an aggregate Regional Climate Change Index (RCCI) that combines changes in mean annual temperature and precipitation with changes in their interannual variability, we assess multi-dimensional climate changes across the “Global 200” ecoregions – a set of priority ecoregions designed to “achieve the goal of saving a broad diversity of the Earth’s ecosystems” – over the 21st century. Using an ensemble of 62 climate scenarios, our analyses show that, between 1991–2010 and 2081–2100, 96% of the ecoregions considered will be likely (more than 66% probability) to face moderate-to-pronounced climate changes, when compared to the magnitudes of change during the past five decades. Ecoregions at high northern latitudes are projected to experience most pronounced climate change, followed by those in the Mediterranean Basin, Amazon Basin, East Africa, and South Asia. Relatively modest RCCI signals are expected over ecoregions in Northwest South America, West Africa, and Southeast Asia, yet with considerable uncertainties. Although not indicative of climate-change impacts per se, the RCCI-based assessment can help policy-makers gain a quantitative and comprehensive overview of the unevenly distributed climate risks across the G200 ecoregions. Whether due to significant climate change signals or large uncertainties, the ecoregions highlighted in the assessment deserve special attention in more detailed impact assessments to inform effective conservation strategies under future climate change.This study was supported by the Environmental Protection Public Service Project of China (201209031) (URL:http://kjs.mep.gov.cn/gyxhykyzx/)

    A passive transmitter for quantum key distribution with coherent light

    Get PDF
    Signal state preparation in quantum key distribution schemes can be realized using either an active or a passive source. Passive sources might be valuable in some scenarios; for instance, in those experimental setups operating at high transmission rates, since no externally driven element is required. Typical passive transmitters involve parametric down-conversion. More recently, it has been shown that phase-randomized coherent pulses also allow passive generation of decoy states and Bennett-Brassard 1984 (BB84) polarization signals, though the combination of both setups in a single passive source is cumbersome. In this paper, we present a complete passive transmitter that prepares decoy-state BB84 signals using coherent light. Our method employs sum-frequency generation together with linear optical components and classical photodetectors. In the asymptotic limit of an infinite long experiment, the resulting secret key rate (per pulse) is comparable to the one delivered by an active decoy-state BB84 setup with an infinite number of decoy settings.Comment: 10 pages, 4 figures. arXiv admin note: substantial text overlap with arXiv:1009.383

    Simulations of extensional flow in microrheometric devices

    Get PDF
    We present a detailed numerical study of the flow of a Newtonian fluid through microrheometric devices featuring a sudden contraction–expansion. This flow configuration is typically used to generate extensional deformations and high strain rates. The excess pressure drop resulting from the converging and diverging flow is an important dynamic measure to quantify if the device is intended to be used as a microfluidic extensional rheometer. To explore this idea, we examine the effect of the contraction length, aspect ratio and Reynolds number on the flow kinematics and resulting pressure field. Analysis of the computed velocity and pressure fields show that, for typical experimental conditions used in microfluidic devices, the steady flow is highly three-dimensional with open spiraling vortical structures in the stagnant corner regions. The numerical simulations of the local kinematics and global pressure drop are in good agreement with experimental results. The device aspect ratio is shown to have a strong impact on the flow and consequently on the excess pressure drop, which is quantified in terms of the dimensionless Couette and Bagley correction factors. We suggest an approach for calculating the Bagley correction which may be especially appropriate for planar microchannels
    corecore