297 research outputs found

    Cell type-specific manifestations of cortical thickness heterogeneity in schizophrenia

    Get PDF
    Brain morphology differs markedly between individuals with schizophrenia, but the cellular and genetic basis of this heterogeneity is poorly understood. Here, we sought to determine whether cortical thickness (CTh) heterogeneity in schizophrenia relates to interregional variation in distinct neural cell types, as inferred from established gene expression data and person-specific genomic variation. This study comprised 1849 participants in total, including a discovery (140 cases and 1267 controls) and a validation cohort (335 cases and 185 controls). To characterize CTh heterogeneity, normative ranges were established for 34 cortical regions and the extent of deviation from these ranges was measured for each individual with schizophrenia. CTh deviations were explained by interregional gene expression levels of five out of seven neural cell types examined: (1) astrocytes; (2) endothelial cells; (3) oligodendrocyte progenitor cells (OPCs); (4) excitatory neurons; and (5) inhibitory neurons. Regional alignment between CTh alterations with cell type transcriptional maps distinguished broad patient subtypes, which were validated against genomic data drawn from the same individuals. In a predominantly neuronal/endothelial subtype (22% of patients), CTh deviations covaried with polygenic risk for schizophrenia (sczPRS) calculated specifically from genes marking neuronal and endothelial cells (r = −0.40, p = 0.010). Whereas, in a predominantly glia/OPC subtype (43% of patients), CTh deviations covaried with sczPRS calculated from glia and OPC-linked genes (r = −0.30, p = 0.028). This multi-scale analysis of genomic, transcriptomic, and brain phenotypic data may indicate that CTh heterogeneity in schizophrenia relates to inter-individual variation in cell-type specific functions. Decomposing heterogeneity in relation to cortical cell types enables prioritization of schizophrenia subsets for future disease modeling efforts

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Refining transcriptional programs in kidney development by integration of deep RNA-sequencing and array-based spatial profiling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The developing mouse kidney is currently the best-characterized model of organogenesis at a transcriptional level. Detailed spatial maps have been generated for gene expression profiling combined with systematic <it>in situ </it>screening. These studies, however, fall short of capturing the transcriptional complexity arising from each locus due to the limited scope of microarray-based technology, which is largely based on "gene-centric" models.</p> <p>Results</p> <p>To address this, the polyadenylated RNA and microRNA transcriptomes of the 15.5 dpc mouse kidney were profiled using strand-specific RNA-sequencing (RNA-Seq) to a depth sufficient to complement spatial maps from pre-existing microarray datasets. The transcriptional complexity of RNAs arising from mouse RefSeq loci was catalogued; including 3568 alternatively spliced transcripts and 532 uncharacterized alternate 3' UTRs. Antisense expressions for 60% of RefSeq genes was also detected including uncharacterized non-coding transcripts overlapping kidney progenitor markers, Six2 and Sall1, and were validated by section <it>in situ </it>hybridization. Analysis of genes known to be involved in kidney development, particularly during mesenchymal-to-epithelial transition, showed an enrichment of non-coding antisense transcripts extended along protein-coding RNAs.</p> <p>Conclusion</p> <p>The resulting resource further refines the transcriptomic cartography of kidney organogenesis by integrating deep RNA sequencing data with locus-based information from previously published expression atlases. The added resolution of RNA-Seq has provided the basis for a transition from classical gene-centric models of kidney development towards more accurate and detailed "transcript-centric" representations, which highlights the extent of transcriptional complexity of genes that direct complex development events.</p

    Left and right ventricle assessment with Cardiac CT: validation study vs. Cardiac MR

    Get PDF
    Objectives To compare Magnetic Resonance (MR) and Computed Tomography (CT) for the assessment of left (LV) and right (RV) ventricular functional parameters. Methods Seventy nine patients underwent both Cardiac CT and Cardiac MR. Images were acquired using short axis (SAX) reconstructions for CT and 2D cine b-SSFP (balanced- steady state free precession) SAX sequence for MR, and evaluated using dedicated software. Results CT and MR images showed good agreement: LV EF (Ejection Fraction) (52±14% for CT vs. 52±14% for MR; r0 0.73; p>0.05); RV EF (47±12% for CT vs. 47±12% for MR; r00.74; p>0.05); LV EDV (End Diastolic Volume) (74± 21 ml/m 2 for CT vs. 76±25 ml/m 2 for MR; r00.59; p>0.05); RV EDV (84±25 ml/m 2 for CT vs. 80±23 ml/m 2 for MR; r0 0.58; p>0.05); LV ESV (End Systolic Volume)(37±19 ml/m 2 for CT vs. 38±23 ml/m 2 for MR; r00.76; p>0.05); RV ESV (46±21 ml/m 2 for CT vs. 43±18 ml/m 2 for MR; r00.70; p>0.05). Intra- and inter-observer variability were good, and the performance of CT was maintained for different EF subgroups. Conclusions Cardiac CT provides accurate and reproducible LVand RV volume parameters compared with MR, and can be considered as a reliable alternative for patients who are not suitable to undergo MR. Key Points • Cardiac-CT is able to provide Left and Right Ventricular function. • Cardiac-CT is accurate as MR for LV and RV volume assessment. • Cardiac-CT can provide accurate evaluation of coronary arteries and LV and RV function

    Uncharted waters: rare and unclassified cardiomyopathies characterized on cardiac magnetic resonance imaging

    Get PDF
    Cardiac magnetic resonance imaging (CMR) has undergone considerable technology advances in recent years, so that it is now entering into mainstream cardiac imaging practice. In particular, CMR is proving to be a valuable imaging tool in the detection, morphological assessment and functional assessment of cardiomyopathies. Although our understanding of this broad group of heart disorders continues to expand, it is an evolving group of entities, with the rarer cardiomyopathies remaining poorly understood or even unclassified. In this review, we describe the clinical and pathophysiological aspects of several of the rare/unclassified cardiomyopathies and their appearance on CMR

    The global distribution of lymphatic filariasis, 2000–18: a geospatial analysis

    Get PDF
    Background Lymphatic filariasis is a neglected tropical disease that can cause permanent disability through disruption of the lymphatic system. This disease is caused by parasitic filarial worms that are transmitted by mosquitos. Mass drug administration (MDA) of antihelmintics is recommended by WHO to eliminate lymphatic filariasis as a public health problem. This study aims to produce the first geospatial estimates of the global prevalence of lymphatic filariasis infection over time, to quantify progress towards elimination, and to identify geographical variation in distribution of infection. Methods A global dataset of georeferenced surveyed locations was used to model annual 2000–18 lymphatic filariasis prevalence for 73 current or previously endemic countries. We applied Bayesian model-based geostatistics and time series methods to generate spatially continuous estimates of global all-age 2000–18 prevalence of lymphatic filariasis infection mapped at a resolution of 5 km2 and aggregated to estimate total number of individuals infected. Findings We used 14 927 datapoints to fit the geospatial models. An estimated 199 million total individuals (95% uncertainty interval 174–234 million) worldwide were infected with lymphatic filariasis in 2000, with totals for WHO regions ranging from 3·1 million (1·6–5·7 million) in the region of the Americas to 107 million (91–134 million) in the South-East Asia region. By 2018, an estimated 51 million individuals (43–63 million) were infected. Broad declines in prevalence are observed globally, but focal areas in Africa and southeast Asia remain less likely to have attained infection prevalence thresholds proposed to achieve local elimination. Interpretation Although the prevalence of lymphatic filariasis infection has declined since 2000, MDA is still necessary across large populations in Africa and Asia. Our mapped estimates can be used to identify areas where the probability of meeting infection thresholds is low, and when coupled with large uncertainty in the predictions, indicate additional data collection or intervention might be warranted before MDA programmes cease

    Health sector spending and spending on HIV/AIDS, tuberculosis, and malaria, and development assistance for health: progress towards Sustainable Development Goal 3

    Get PDF
    Background: Sustainable Development Goal (SDG) 3 aims to “ensure healthy lives and promote well-being for all at all ages”. While a substantial effort has been made to quantify progress towards SDG3, less research has focused on tracking spending towards this goal. We used spending estimates to measure progress in financing the priority areas of SDG3, examine the association between outcomes and financing, and identify where resource gains are most needed to achieve the SDG3 indicators for which data are available. Methods: We estimated domestic health spending, disaggregated by source (government, out-of-pocket, and prepaid private) from 1995 to 2017 for 195 countries and territories. For disease-specific health spending, we estimated spending for HIV/AIDS and tuberculosis for 135 low-income and middle-income countries, and malaria in 106 malaria-endemic countries, from 2000 to 2017. We also estimated development assistance for health (DAH) from 1990 to 2019, by source, disbursing development agency, recipient, and health focus area, including DAH for pandemic preparedness. Finally, we estimated future health spending for 195 countries and territories from 2018 until 2030. We report all spending estimates in inflation-adjusted 2019 US,unlessotherwisestated.Findings:SincethedevelopmentandimplementationoftheSDGsin2015,globalhealthspendinghasincreased,reaching, unless otherwise stated. Findings: Since the development and implementation of the SDGs in 2015, global health spending has increased, reaching 7·9 trillion (95% uncertainty interval 7·8–8·0) in 2017 and is expected to increase to 110trillion(107112)by2030.In2017,inlowincomeandmiddleincomecountriesspendingonHIV/AIDSwas11·0 trillion (10·7–11·2) by 2030. In 2017, in low-income and middle-income countries spending on HIV/AIDS was 20·2 billion (17·0–25·0) and on tuberculosis it was 109billion(103118),andinmalariaendemiccountriesspendingonmalariawas10·9 billion (10·3–11·8), and in malaria-endemic countries spending on malaria was 5·1 billion (4·9–5·4). Development assistance for health was 406billionin2019andHIV/AIDShasbeenthehealthfocusareatoreceivethehighestcontributionsince2004.In2019,40·6 billion in 2019 and HIV/AIDS has been the health focus area to receive the highest contribution since 2004. In 2019, 374 million of DAH was provided for pandemic preparedness, less than 1% of DAH. Although spending has increased across HIV/AIDS, tuberculosis, and malaria since 2015, spending has not increased in all countries, and outcomes in terms of prevalence, incidence, and per-capita spending have been mixed. The proportion of health spending from pooled sources is expected to increase from 81·6% (81·6–81·7) in 2015 to 83·1% (82·8–83·3) in 2030. Interpretation: Health spending on SDG3 priority areas has increased, but not in all countries, and progress towards meeting the SDG3 targets has been mixed and has varied by country and by target. The evidence on the scale-up of spending and improvements in health outcomes suggest a nuanced relationship, such that increases in spending do not always results in improvements in outcomes. Although countries will probably need more resources to achieve SDG3, other constraints in the broader health system such as inefficient allocation of resources across interventions and populations, weak governance systems, human resource shortages, and drug shortages, will also need to be addressed. Funding: The Bill & Melinda Gates Foundatio

    Emergency logistics for wildfire suppression based on forecasted disaster evolution

    Get PDF
    This paper aims to develop a two-layer emergency logistics system with a single depot and multiple demand sites for wildfire suppression and disaster relief. For the first layer, a fire propagation model is first built using both the flame-igniting attributes of wildfires and the factors affecting wildfire propagation and patterns. Second, based on the forecasted propagation behavior, the emergency levels of fire sites in terms of demand on suppression resources are evaluated and prioritized. For the second layer, considering the prioritized fire sites, the corresponding resource allocation problem and vehicle routing problem (VRP) are investigated and addressed. The former is approached using a model that can minimize the total forest loss (from multiple sites) and suppression costs incurred accordingly. This model is constructed and solved using principles of calculus. To address the latter, a multi-objective VRP model is developed to minimize both the travel time and cost of the resource delivery vehicles. A heuristic algorithm is designed to provide the associated solutions of the VRP model. As a result, this paper provides useful insights into effective wildfire suppression by rationalizing resources regarding different fire propagation rates. The supporting models can also be generalized and tailored to tackle logistics resource optimization issues in dynamic operational environments, particularly those sharing the same feature of single supply and multiple demands in logistics planning and operations (e.g., allocation of ambulances and police forces). © 2017 The Author(s

    Carboxylic ester hydrolases from hyperthermophiles

    Get PDF
    Carboxylic ester hydrolyzing enzymes constitute a large group of enzymes that are able to catalyze the hydrolysis, synthesis or transesterification of an ester bond. They can be found in all three domains of life, including the group of hyperthermophilic bacteria and archaea. Esterases from the latter group often exhibit a high intrinsic stability, which makes them of interest them for various biotechnological applications. In this review, we aim to give an overview of all characterized carboxylic ester hydrolases from hyperthermophilic microorganisms and provide details on their substrate specificity, kinetics, optimal catalytic conditions, and stability. Approaches for the discovery of new carboxylic ester hydrolases are described. Special attention is given to the currently characterized hyperthermophilic enzymes with respect to their biochemical properties, 3D structure, and classification
    corecore